Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1974 Aug;141(2):445–454. doi: 10.1042/bj1410445

Interactions of an intact proteoglycan and its fragments with basic homopolypeptides in dilute aqueous solution

Robert A Gelman 1,*, John Blackwell 1,, Martin B Mathews 2
PMCID: PMC1168098  PMID: 4281655

Abstract

The interactions between a proteoglycan and cationic polypeptides have been investigated by the use of circular-dichroism spectroscopy. The interaction produces an induced conformational change for poly(l-arginine) and poly(l-lysine), similar to the effects previously reported for mucopolysaccharide–polypeptide mixtures. For bovine nasal septum proteoglycan, the interactions are similar to those for chondroitin 4-sulphate, which comprises approximately 63% of the total polysaccharide. The results also suggest that the interactions produce a conformational change in the protein core. Similar studies for the Smith-degradation product show that the protein core can adopt a substantial α-helical content and is capable of interactions with poly-(l-arginine). The interactions for chondroitin sulphate `doublets' are significantly different from those for the separated chains, indicating that the arrangement of the polysaccharide side chains in pairs (and larger groups) along the protein backbone contributes to the interaction properties of the intact proteoglycan.

Full text

PDF
445

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brandt K. D., Muir H. Heterogeneity of protein-polysaccharides of porcine articular cartilage. The sequential extraction of chondroitin sulphate-proteins with iso-osmotic neutral sodium acetate. Biochem J. 1971 Jan;121(2):261–270. doi: 10.1042/bj1210261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chen Y. H., Yang J. T., Martinez H. M. Determination of the secondary structures of proteins by circular dichroism and optical rotatory dispersion. Biochemistry. 1972 Oct 24;11(22):4120–4131. doi: 10.1021/bi00772a015. [DOI] [PubMed] [Google Scholar]
  3. Eyring E. J., Yang J. T. Conformation of protein-polysaccharide complex from bovine nasal septum. J Biol Chem. 1968 Mar 25;243(6):1306–1311. [PubMed] [Google Scholar]
  4. Gelman R. A., Blackwell J. Heparin-polypeptide interactions in aqueous solution. Arch Biochem Biophys. 1973 Nov;159(1):427–433. doi: 10.1016/0003-9861(73)90470-0. [DOI] [PubMed] [Google Scholar]
  5. Gelman R. A., Blackwell J. Interactions between mucopolysaccharides and cationic polypeptides in aqueous solution: Chondroitin 4-sulfate and dermatan sulfate. Biopolymers. 1973;12(9):1959–1974. doi: 10.1002/bip.1973.360120904. [DOI] [PubMed] [Google Scholar]
  6. Gelman R. A., Blackwell J. Interactions between mucopolysaccharides and cationic polypeptides in aqueous solution: hyaluronic acid, heparitin sulfate, and keratan sulfate. Biopolymers. 1974 Jan;13(1):139–156. doi: 10.1002/bip.1974.360130109. [DOI] [PubMed] [Google Scholar]
  7. Gelman R. A., Blackwell J. Mucopolysaccharide-polypeptide interactions: effect of the position of the sulfate group. Biochim Biophys Acta. 1973 Feb 28;297(2):452–455. doi: 10.1016/0304-4165(73)90092-5. [DOI] [PubMed] [Google Scholar]
  8. Gelman R. A., Glaser D. N., Blackwell J. Interaction between chondroitin-6-sulfate and poly-L-arginine in aqueous solution. Biopolymers. 1973 Jun;12(6):1223–1232. doi: 10.1002/bip.1973.360120603. [DOI] [PubMed] [Google Scholar]
  9. Gelman R. A., Rippon W. B., Blackwell J. Interactions between chondroitin sulfate C and poly-L-lysine: preliminary report. Biochem Biophys Res Commun. 1972 Aug 7;48(3):708–711. doi: 10.1016/0006-291x(72)90406-8. [DOI] [PubMed] [Google Scholar]
  10. Greenfield N., Fasman G. D. Computed circular dichroism spectra for the evaluation of protein conformation. Biochemistry. 1969 Oct;8(10):4108–4116. doi: 10.1021/bi00838a031. [DOI] [PubMed] [Google Scholar]
  11. Gregory J. D. Multiple aggregation factors in cartilage proteoglycan. Biochem J. 1973 Jun;133(2):383–386. doi: 10.1042/bj1330383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hammes G. G., Schullery S. E. Structure of macromolecular aggregates. I. Aggregation-induced conformational changes in polypeptides. Biochemistry. 1968 Nov;7(11):3882–3887. doi: 10.1021/bi00851a014. [DOI] [PubMed] [Google Scholar]
  13. Hascall V. C., Sajdera S. W. Physical properties and polydispersity of proteoglycan from bovine nasal cartilage. J Biol Chem. 1970 Oct 10;245(19):4920–4930. [PubMed] [Google Scholar]
  14. Hascall V. C., Sajdera S. W. Proteinpolysaccharide complex from bovine nasal cartilage. The function of glycoprotein in the formation of aggregates. J Biol Chem. 1969 May 10;244(9):2384–2396. [PubMed] [Google Scholar]
  15. KAPLAN D., MEYER K. Ageing of human cartilage. Nature. 1959 May 2;183(4670):1267–1268. doi: 10.1038/1831267a0. [DOI] [PubMed] [Google Scholar]
  16. MATHEWS M. B., LOZAITYTE I. Sodium chondroitin sulfate-protein complexes of cartilage. I. Molecular weight and shape. Arch Biochem Biophys. 1958 Mar;74(1):158–174. doi: 10.1016/0003-9861(58)90210-8. [DOI] [PubMed] [Google Scholar]
  17. Mathews M. B., Decker L. The effect of acid mucopolysaccharides and acid mucopolysaccharide-proteins on fibril formation from collagen solutions. Biochem J. 1968 Oct;109(4):517–526. doi: 10.1042/bj1090517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Mathews M. B., Glagov S. Acid mucopolysaccharide patterns in aging human cartilage. J Clin Invest. 1966 Jul;45(7):1103–1111. doi: 10.1172/JCI105416. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Obrink B. A study of the interactions between monomeric tropocollagen and glycosaminoglycans. Eur J Biochem. 1973 Mar 1;33(2):387–400. doi: 10.1111/j.1432-1033.1973.tb02695.x. [DOI] [PubMed] [Google Scholar]
  20. Sajdera S. W., Hascall V. C. Proteinpolysaccharide complex from bovine nasal cartilage. A comparison of low and high shear extraction procedures. J Biol Chem. 1969 Jan 10;244(1):77–87. [PubMed] [Google Scholar]
  21. Steven F. S., Knott J., Jackson D. S., Podrazky V. Collagen-protein-polysaccharide interactions in human intervertebral disc. Biochim Biophys Acta. 1969;188(2):307–313. doi: 10.1016/0005-2795(69)90080-4. [DOI] [PubMed] [Google Scholar]
  22. Toole B. P., Lowther D. A. Precipitation of collagen fibrils in vitro by protein polysaccharides. Biochem Biophys Res Commun. 1967 Nov 30;29(4):515–520. doi: 10.1016/0006-291x(67)90514-1. [DOI] [PubMed] [Google Scholar]
  23. Toole B. P., Lowther D. A. The effect of chondroitin sulphate-protein on the formation of collagen fibrils in vitro. Biochem J. 1968 Oct;109(5):857–866. doi: 10.1042/bj1090857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Urry D. W., Hinners T. A., Masotti L. Calculation of distorted circular dichroism curves for poly-L-glutamic acid suspensions. Arch Biochem Biophys. 1970 Mar;137(1):214–221. doi: 10.1016/0003-9861(70)90428-5. [DOI] [PubMed] [Google Scholar]
  25. Urry D. W., Ji T. H. Distortions in circular dichroism patterns of particulate (or membranous) systems. Arch Biochem Biophys. 1968 Dec;128(3):802–807. doi: 10.1016/0003-9861(68)90088-x. [DOI] [PubMed] [Google Scholar]
  26. Wells P. J., Serafini-Fracassini A. Molecular organization of cartilage proteoglycan. Nat New Biol. 1973 Jun 27;243(130):266–268. doi: 10.1038/newbio243266a0. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES