Skip to main content
Journal of Anatomy logoLink to Journal of Anatomy
. 1982 Aug;135(Pt 1):155–164.

The ACTH cells in the pituitary gland of the nine-spined stickleback, Pungitius pungitius L.

M Benjamin
PMCID: PMC1168138  PMID: 6290440

Abstract

The ACTH cells form a layer 1-8 cells thick, dorsal to the prolactin cells in the rostral pars distalis. They react only mildly with a variety of stains including PAS-lead haematoxylin. Their nuclear diameters vary seasonally in a manner that closely parallels that of the prolactin cells. The relative volumes of the ACTH and prolactin cell zones are remarkably constant in animals of different sizes. It is suggested that the two hormones may act synergistically at various body sites and that this accounts for the related morphological features of the ACTH and prolactin cells. There are no changes in the surface density of the ACTH zone with increasing animal size. Consequently, the ACTH/neurohypophysial border is highly convoluted in large animals. The proximity of the neurohypophysis also influences cell ultrastructure, as small processes, packed with secretory granules are more numerous near the basal lamina separating the adeno- and neurohypophyses. A morphometric analysis of ACTH cells provides base-line ultrastructural data for experimental studies and for comparisons with other teleosts. The cells have small, secretory granules, 100-300 nm in diameter, and of variable electron density. There is little rough endoplasmic reticulum and a small Golgi apparatus. There is no evidence of granule release by exocytosis and various explanations for this are suggested.

Full text

PDF
155

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abraham M., Dinari-Lavie V., Lotan R. The pituitary of Aphanius dispar (Rüppell) from hypersaline marshes and freshwater. II. Ultrastructure of the rostral pars distalis. Cell Tissue Res. 1977 Apr 20;179(3):317–330. doi: 10.1007/BF00221103. [DOI] [PubMed] [Google Scholar]
  2. Abraham M., Kieselstein M., Lisson-Begon S. The extravascular channel system in the rostral pituitary of Mugil cephalus (Teleostei) as revealed by use of horseradish peroxidase. Cell Tissue Res. 1976 Apr 2;167(3):289–296. doi: 10.1007/BF00219143. [DOI] [PubMed] [Google Scholar]
  3. Baker B. I., Leatherland J. L., Scott A. P. The release of secretory products from the corticotrophic cells of Salmo gairdneri in vitro. Cell Tissue Res. 1974;151(4):481–487. doi: 10.1007/BF00222993. [DOI] [PubMed] [Google Scholar]
  4. Batten T. F., Ball J. N. Circadian changes in prolactin cell activity in the pituitary of the teleost Poecilia latipinna in freshwater. Cell Tissue Res. 1976 Jan 26;165(2):267–280. doi: 10.1007/BF00226664. [DOI] [PubMed] [Google Scholar]
  5. Batten T. F., Ball J. N. Quantitative ultrastructural evidence of alterations in prolactin secretion related to external salinity in a teleost fish (Poecilia latipinna). Cell Tissue Res. 1977 Nov 30;185(1):129–145. doi: 10.1007/BF00226674. [DOI] [PubMed] [Google Scholar]
  6. Benjamin M. A morphometric study of the pituitary cell types in the freshwater stickleback, Gasterosteus aculeatus, form leiurus. Cell Tissue Res. 1974;152(1):69–92. doi: 10.1007/BF00224211. [DOI] [PubMed] [Google Scholar]
  7. Benjamin M. Cytological changes in prolactin, ACTH, and growth hormone cells of the pituitary gland of Pungitius pungitius L. in response to increased environmental salinities. Gen Comp Endocrinol. 1978 Sep;36(1):48–58. doi: 10.1016/0016-6480(78)90049-7. [DOI] [PubMed] [Google Scholar]
  8. Benjamin M. Seasonal changes in the prolactin cell of the pituitary gland of the freshwater stickleback, Gasterosteus aculeatus, form leiurus. Cell Tissue Res. 1974;152(1):93–102. doi: 10.1007/BF00224212. [DOI] [PubMed] [Google Scholar]
  9. Benjamin M. The origin of pituitary cysts in the rostral pars distalis of the nine-spined stickleback, Pungitius pungitius L. Cell Tissue Res. 1981;214(2):417–430. doi: 10.1007/BF00249222. [DOI] [PubMed] [Google Scholar]
  10. Benjamin M. Ultrastructure of the endocrine cell types in the adenohypophysis of the teleost, Poecilial latipinna--a morphometric model. Cell Tissue Res. 1976 Mar 5;167(1):125–146. doi: 10.1007/BF00220164. [DOI] [PubMed] [Google Scholar]
  11. Dharmamba M., Nishioka R. S. Response of "prolactin-secreting" cells of Tilapia mossambica to environmental salinity. Gen Comp Endocrinol. 1968 Jun;1(3):409–420. doi: 10.1016/0016-6480(68)90051-8. [DOI] [PubMed] [Google Scholar]
  12. Follenius E., Dubois M. P. Etude immunocytologique des cellules corticotropes de plusieurs expèces de poissons téléostéens: Gasterosteus aculeatus L., Carassius auratus L., Lebistes reticulatus P., Salmo irideus Gibbs et Perca fluviatilis L. Gen Comp Endocrinol. 1976 Mar;28(3):339–349. doi: 10.1016/0016-6480(76)90186-6. [DOI] [PubMed] [Google Scholar]
  13. Follénius E., Doerr-Schott J., Dubois M. P. Immunocytology of pituitary cells from teleost fishes. Int Rev Cytol. 1978;54:193–223. doi: 10.1016/s0074-7696(08)60168-0. [DOI] [PubMed] [Google Scholar]
  14. KERR T. HISTOLOGY OF THE DISTAL LOBE OF THE PITUITARY OF XENOPUS LAEVIS DAUDIN. Gen Comp Endocrinol. 1965 Apr;5:232–240. doi: 10.1016/0016-6480(65)90117-6. [DOI] [PubMed] [Google Scholar]
  15. Nagahama Y., Clarke W. C., Hoar W. S. Influence of salinity on ultrastructure of the secretory cells of the adenohypophyseal pars distalis in yearling coho salmon (Oncorhynchus kisutch). Can J Zool. 1977 Jan;55(1):183–198. doi: 10.1139/z77-022. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Anatomy are provided here courtesy of Anatomical Society of Great Britain and Ireland

RESOURCES