Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1974 Sep;141(3):617–625. doi: 10.1042/bj1410617

Studies on the 3′-terminal sequences of the large ribosomal ribonucleic acid of different eukaryotes and those associated with `hidden' breaks in heat-dissociable insect 26S ribonucleic acid

John Shine 1, John A Hunt 1,*, Lynn Dalgarno 1
PMCID: PMC1168165  PMID: 4219141

Abstract

The 3′-terminal sequences associated with the large rRNA complex from a range of eukaryotes were determined after pancreatic or T1-ribonuclease digestion of RNA terminally labelled with [3H]isoniazid. In all higher eukaryotes examined except Drosophila melanogaster, the 3′-terminal sequences Y-G-UOH and G-C-UOH were demonstrated for the large RNA component(s) and for 6S RNA respectively. The 3′-terminal sequence of Saccharomyces cerevisiae 26S RNA was Y-G-UOH and that of 6S RNA Y-A-U-U-UOH. Three 3′-terminal sequences were found in equimolar amounts in the heat-dissociable 26S rRNA characteristic of insect ribosomes. These were Y-G-U-G-UOH, Y-C-G-UOH and G-C-UOH for cultured Antheraea eucalypti cells, Y-G-UOH, Y-G-UOH and G-C-UOH for Galleria mellonella larvae and Y-C-G-AOH, Y-G-U-AOH and G-Y-U-GOH for Drosophila melanogaster flies. Thus the introduction of the central scission in insect 26S rRNA results in the generation of a unique 3′-terminus and does not arise from random cleavage of the polynucleotide chain.

Full text

PDF
617

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmad M. S., Markham P. D., Glitz D. G. Terminal nucleotides of avian myeloblastosis virus RNA and of ribosomal RNA from chicken leukemic myeloblasts. Biochim Biophys Acta. 1972 Nov 9;281(4):554–563. doi: 10.1016/0005-2787(72)90156-6. [DOI] [PubMed] [Google Scholar]
  2. Bostock C. J., Prescott D. M., Lauth M. Lability of 26 S ribosomal RNA in Tetrahymena pyriformis. Exp Cell Res. 1971 May;66(1):260–262. doi: 10.1016/s0014-4827(71)80038-1. [DOI] [PubMed] [Google Scholar]
  3. Dalgarno L., Hosking D. M., Shen C. H. Steps in the biosynthesis of ribosomal RNA in cultured Aedes aegypti cells. Eur J Biochem. 1972 Jan 21;24(3):498–506. doi: 10.1111/j.1432-1033.1972.tb19712.x. [DOI] [PubMed] [Google Scholar]
  4. Dalgarno L., Shine J. Conserved terminal sequence in 18SrRNA may represent terminator anticodons. Nat New Biol. 1973 Oct 31;245(148):261–262. doi: 10.1038/newbio245261a0. [DOI] [PubMed] [Google Scholar]
  5. Gould H. J., Arnstein H. R., Cox R. A. The dissociation of reticulocyte polysomes into subunits and the location of messenger RNA. J Mol Biol. 1966 Feb;15(2):600–618. doi: 10.1016/s0022-2836(66)80130-4. [DOI] [PubMed] [Google Scholar]
  6. HUNT J. A. TERMINAL-SEQUENCE STUDIES OF HIGH-MOLECULAR-WEIGHT RIBONUCLEIC. THE REACTION OF PERIODATE-OXIDIZED RIBONUCLEOSIDES , 5'-RIBONUCLEOTIDES AND RIBONUCLEIC ACID WITH ISONIAZID. Biochem J. 1965 May;95:541–551. doi: 10.1042/bj0950541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hastings J. R., Kirby K. S. The nucleic acids of Drosophila melanogaster. Biochem J. 1966 Aug;100(2):532–539. doi: 10.1042/bj1000532. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hunt J. A. Terminal sequence studies of high-molecular-weight ribonucleic acid. The 3' termini of rabbit globin messenger ribonucleic acid. Biochem J. 1973 Feb;131(2):315–325. doi: 10.1042/bj1310315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hunt J. A. Terminal-sequence studies of high-molecular-weight ribonucleic acid. The 3'-termini of rabbit reticulocyte ribosomal RNA. Biochem J. 1970 Nov;120(2):353–363. doi: 10.1042/bj1200353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Koser R. B., Collier J. R. The molecular weight and thermolability of Ilyanassa ribosomal RNA. Biochim Biophys Acta. 1971 Dec 16;254(2):272–277. doi: 10.1016/0005-2787(71)90836-7. [DOI] [PubMed] [Google Scholar]
  11. Leaver C. J., Ingle J. The molecular integrity of chloroplast ribosomal ribonucleic acid. Biochem J. 1971 Jun;123(2):235–243. doi: 10.1042/bj1230235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Loening U. E. Molecular weights of ribosomal RNA in relation to evolution. J Mol Biol. 1968 Dec;38(3):355–365. doi: 10.1016/0022-2836(68)90391-4. [DOI] [PubMed] [Google Scholar]
  13. Rawson J. R., Stutz E. Characterization of Euglena cytoplasmic ribosomes and ribosomal RNA by zone velocity sedimentation IN SUCROSE GRADIENTS. J Mol Biol. 1968 Apr 14;33(1):309–314. doi: 10.1016/0022-2836(68)90296-9. [DOI] [PubMed] [Google Scholar]
  14. Rubin G. M. The nucleotide sequence of Saccharomyces cerevisiae 5.8 S ribosomal ribonucleic acid. J Biol Chem. 1973 Jun 10;248(11):3860–3875. [PubMed] [Google Scholar]
  15. Shine J., Dalgarno L. Identical 3'-terminal octanucleotide sequence in 18S ribosomal ribonucleic acid from different eukaryotes. A proposed role for this sequence in the recognition of terminator codons. Biochem J. 1974 Sep;141(3):609–615. doi: 10.1042/bj1410609a. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Shine J., Dalgarno L. Occurrence of heat-dissociable ribosomal RNA in insects: the presence of three polynucleotide chains in 26 S RNA from cultured Aedes aegypti cells. J Mol Biol. 1973 Mar 25;75(1):57–72. doi: 10.1016/0022-2836(73)90528-7. [DOI] [PubMed] [Google Scholar]
  17. Shine J., Dalgarno L. The 3'-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1342–1346. doi: 10.1073/pnas.71.4.1342. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Stevens A. R., Pachler P. F. Discontinuity of 26 s rRNA in Acanthamoeba castellani. J Mol Biol. 1972 May 14;66(2):225–237. doi: 10.1016/0022-2836(72)90475-5. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES