Abstract
1. A procedure was devised which is suitable for the isolation of β-lactamase I and β-lactamase II from Bacillus cereus 569/H/9 on a large scale. After adsorption on to Celite both enzymes were eluted in good yield and separated by chromatography on Sephadex CM-50. 2. β-Lactamase I was separated into three main components by isoelectric focusing and into two components by chromatography. 3. The Zn2+-requiring β-lactamase II obtained by this procedure had a lower molecular weight (22000) than β-lactamase I (28000) and also differed from the latter in containing one cysteine residue. 4. The β-lactamase II contained no carbohydrate, but showed the thermostability of the enzyme isolated earlier as a protein–carbohydrate complex. 5. Amino acid analyses and tryptic-digest `maps' indicate that some degree of homology between β-lactamase I and β-lactamase II is possible, but that β-lactamase I is not composed of the entire sequence of β-lactamase II together with an additional peptide fragment. 6. A 6-methylpenicillin and a 7-methylcephalosporin showed much lower affinities for both enzymes than did penicillins and cephalosporins themselves.
Full text
PDF![115](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24ae/1168359/deeff1352fa0/biochemj00573-0124.png)
![116](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24ae/1168359/716a863c0881/biochemj00573-0125.png)
![117](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24ae/1168359/77e16958b8f9/biochemj00573-0126.png)
![118](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24ae/1168359/d1846e82f706/biochemj00573-0127.png)
![119](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24ae/1168359/a1438ce27676/biochemj00573-0128.png)
![120](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24ae/1168359/458599b8cde9/biochemj00573-0129.png)
![121](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24ae/1168359/fe478ce49246/biochemj00573-0130.png)
![122](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24ae/1168359/339675ae81ca/biochemj00573-0131.png)
![123](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24ae/1168359/4c301f8d9a7a/biochemj00573-0132.png)
![124](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24ae/1168359/77101fe2936e/biochemj00573-0133.png)
![125](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24ae/1168359/8c9453e3e0cb/biochemj00573-0134.png)
![126](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24ae/1168359/2cb8473207ae/biochemj00573-0135.png)
![127](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24ae/1168359/fa1309702dbf/biochemj00573-0136.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arcos J. M. Diferenciación de penicilinasas en Bacillus cereus. Rev Esp Fisiol. 1968 Sep;24(3):137–146. [PubMed] [Google Scholar]
- CROMPTON B., JAGO M., CRAWFORD K., NEWTON G. G., ABRAHAM E. P. Behaviour of some derivatives of 7-aminocephalosporanic acid and 6-aminopenicillanic acidas substrates, inhibitors and inducers of penicillinases. Biochem J. 1962 Apr;83:52–63. doi: 10.1042/bj0830052. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Citri N., Pollock M. R. The biochemistry and function of beta-lactamase (penicillinase). Adv Enzymol Relat Areas Mol Biol. 1966;28:237–323. doi: 10.1002/9780470122730.ch4. [DOI] [PubMed] [Google Scholar]
- Dalgleish D. G., Peacocke A. R. Circular-dichroism studies on two -lactamases from Bacillus cereus. Biochem J. 1971 Nov;125(1):155–158. doi: 10.1042/bj1250155. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FLOYD N. F., CAMMAROTI M. S., LAVINE T. F. THE DECOMPOSITION OF DL-METHIONINE SULFOXIDE IN 6 N HYDROCHLORIC ACID. Arch Biochem Biophys. 1963 Sep;102:343–345. doi: 10.1016/0003-9861(63)90239-x. [DOI] [PubMed] [Google Scholar]
- HEILMANN J., BARROLLIER J., WATZKE E. Beitrag zur Aminosäurebestimmung auf Papierchromatogrammen. Hoppe Seylers Z Physiol Chem. 1957;309(4-6):219–220. [PubMed] [Google Scholar]
- HIRS C. H. The oxidation of ribonuclease with performic acid. J Biol Chem. 1956 Apr;219(2):611–621. [PubMed] [Google Scholar]
- Hamilton-Miller J. M., Newton G. G., Abraham E. P. Products of aminolysis and enzymic hydrolysis of the cephalosporins. Biochem J. 1970 Feb;116(3):371–384. doi: 10.1042/bj1160371. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Imsande J., Gillin F. D., Tanis R. J., Atherly A. G. Properties of penicillinase from Bacillus cereus 569. J Biol Chem. 1970 May 10;245(9):2205–2212. [PubMed] [Google Scholar]
- KATZ A. M., DREYER W. J., ANFINSEN C. B. Peptide separation by two-dimensional chromatography and electrophoresis. J Biol Chem. 1959 Nov;234:2897–2900. [PubMed] [Google Scholar]
- KOGUT M., POLLOCK M. R., TRIDGELL E. J. Purification of penicillin-induced penicillinase of Bacillus cereus NRRL 569: a comparison of its properties with those of a similarly purified penicillinase produced spontaneously by a constitutive mutant strain. Biochem J. 1956 Mar;62(3):391–401. doi: 10.1042/bj0620391. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuwabara S., Adams E. P., Abraham E. P. The composition of beta-lactamase I and beta-lactamase II from Bacillus cereus 569-H. Biochem J. 1970 Jul;118(3):475–480. doi: 10.1042/bj1180475. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuwabara S., Lloyd P. H. Protein and carbohydrate moieties of a preparation of -lactamase II. Biochem J. 1971 Aug;124(1):215–220. doi: 10.1042/bj1240215. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuwabara S. Purification and properties of two extracellular beta-lactamases from Bacillus cereus 569-H. Biochem J. 1970 Jul;118(3):457–465. doi: 10.1042/bj1180457. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lloyd P. H., Peacocke A. R. Sedimentation-equilibrium studies on the heterogeneity of two beta-lactamases. Biochem J. 1970 Jul;118(3):467–474. doi: 10.1042/bj1180467. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MITCHELL P. A new technique for stirred aerated culture. Nature. 1949 Nov 12;164(4176):846–846. doi: 10.1038/164846a0. [DOI] [PubMed] [Google Scholar]
- Madaiah M., Day R. A. Amino acid composition and peptide maps of Bacillus cereus 569-H penicillinase. Biochim Biophys Acta. 1971 Apr 27;236(1):191–196. doi: 10.1016/0005-2795(71)90164-4. [DOI] [PubMed] [Google Scholar]
- Melling J., Scott G. K. Preparation of gram quantities of a purified R-factor-mediated penicillinase from Escherichia coli strain W3310. Biochem J. 1972 Nov;130(1):55–62. doi: 10.1042/bj1300055. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PECHERE J. F., ZANEN J. Possible production of several exopenicillinases by Bacillus cereus. Nature. 1962 Aug 25;195:805–806. doi: 10.1038/195805b0. [DOI] [PubMed] [Google Scholar]
- Partridge S. M. Filter-paper partition chromatography of sugars: 1. General description and application to the qualitative analysis of sugars in apple juice, egg white and foetal blood of sheep. with a note by R. G. Westall. Biochem J. 1948;42(2):238–250. doi: 10.1042/bj0420238. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sabath L. D., Abraham E. P. Cephalosporinase and penicillinase activity of Bacillus cereus. Antimicrob Agents Chemother (Bethesda) 1965;5:392–397. [PubMed] [Google Scholar]
- Sabath L. D., Casey J. I., Ruch P. A., Stumpf L. L., Finland M. Rapid microassay of gentamicin, kanamycin, neomycin, streptomycin, and vancomycin in serum or plasma. J Lab Clin Med. 1971 Sep;78(3):457–463. [PubMed] [Google Scholar]
- Sabath L. D., Finland M. Thiol-group binding of zinc to a beta-lactamase of Bacillus cereus: differential effects on enzyme activity with penicillin and cephalosporins as substrates. J Bacteriol. 1968 May;95(5):1513–1519. doi: 10.1128/jb.95.5.1513-1519.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sabath L. D., Jago M., Abraham E. P. Cephalosporinase and penicillinase activities of a beta-lactamase from Pseudomonas pyocyanea. Biochem J. 1965 Sep;96(3):739–752. doi: 10.1042/bj0960739. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith B., Warren S. C., Newton G. G., Abraham E. P. Biosynthesis of penicillin N and cephalosporin C. Antibiotic production and other features of the metabolism of Cephalosporium sp. Biochem J. 1967 Jun;103(3):877–890. doi: 10.1042/bj1030877. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]