Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1974 Oct;143(1):181–190. doi: 10.1042/bj1430181

Adenosine triphosphatase activity in the neural lobe of the bovine pituitary gland

Hans Vilhardt 1, Derek B Hope 1
PMCID: PMC1168366  PMID: 4282706

Abstract

1. Homogenates of neural lobes of bovine pituitary glands were fractionated by differential and density-gradient ultracentrifugation and the distribution of adenosine triphosphatase (ATPase) activity was studied. It was shown that all the activity was membrane-bound. 2. On the basis of ionic requirements the ATPase activity was grouped into three categories: (a) Mg2+-dependent, (b) Ca2+-dependent and (c) Mg2++Na++K+-dependent (ouabain-sensitive) ATPases. The activity in the absence of bivalent cations was negligible. The ratio between the activities of the three ATPases varied between the different subcellular fractions. 3. Preincubation of the subcellular fractions with deoxycholate increased the activity of the Mg2++Na++K+-dependent enzyme, whereas the Mg2+- and Ca2+-activated ATPases were either unaffected or slightly inhibited. Triton X-100 solubilized the Mg2+- and Ca2+-ATPases; however, the activity of the Mg2++Na++K+-ATPase was abolished by the concentration of Triton X-100 used. 4. All the subfractions displayed unspecific nucleotide triphosphatase activity towards GTP, ITP and UTP. These substrates inhibited the hydrolysis of ATP by all three ATPases. ADP also inhibited the ATPases. 5. Polyacrylamide-gel electrophoresis of extracts containing the Mg2+- and Ca2+-dependent ATPase activity solubilized by Triton X-100 revealed the presence of two enzymes; one activated by either Mg2+ or Ca2+ and the other activated only by Ca2+. 6. In sucrose density gradients the distribution of vasopressin was different from that of all three types of ATPases. It is therefore suggested that the neurosecretory granules do not possess ATPase activity.

Full text

PDF
181

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BANKS P. THE ADENOSINE-TRIPHOSPHATASE ACTIVITY OF ADRENAL CHROMAFFIN GRANULES. Biochem J. 1965 May;95:490–496. doi: 10.1042/bj0950490. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barer R., Lederis K. Ultrastructure of the rabbit neurohypophysis with special reference to the release of hormones. Z Zellforsch Mikrosk Anat. 1966;75(1):201–239. doi: 10.1007/BF00407156. [DOI] [PubMed] [Google Scholar]
  3. Berl S., Puszkin S., Nicklas W. J. Actomyosin-like protein in brain. Science. 1973 Feb 2;179(4072):441–446. doi: 10.1126/science.179.4072.441. [DOI] [PubMed] [Google Scholar]
  4. CLARKE J. T. SIMPLIFIED "DISC" (POLYACRYLAMIDE GEL) ELECTROPHORESIS. Ann N Y Acad Sci. 1964 Dec 28;121:428–436. doi: 10.1111/j.1749-6632.1964.tb14214.x. [DOI] [PubMed] [Google Scholar]
  5. DEKANSKI J. The quantitative assay of vasopressin. Br J Pharmacol Chemother. 1952 Dec;7(4):567–572. doi: 10.1111/j.1476-5381.1952.tb00723.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. DOUGLAS W. W., POISNER A. M. CALCIUM MOVEMENT IN THE NEUROHYPOPHYSIS OF THE RAT AND ITS RELATION TO THE RELEASE OF VASOPRESSIN. J Physiol. 1964 Jul;172:19–30. doi: 10.1113/jphysiol.1964.sp007400. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. DOUGLAS W. W., POISNER A. M. STIMULUS-SECRETION COUPLING IN A NEUROSECRETORY ORGAN: THE ROLE OF CALCIUM IN THE RELEASE OF VASOPRESSIN FROM THE NEUROHYPOPHYSIS. J Physiol. 1964 Jul;172:1–18. doi: 10.1113/jphysiol.1964.sp007399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dahlström A. Axoplasmic transport (with particular respect to adrenergic neurons). Philos Trans R Soc Lond B Biol Sci. 1971 Jun 17;261(839):325–358. doi: 10.1098/rstb.1971.0064. [DOI] [PubMed] [Google Scholar]
  9. Dahlström A., Häggendal J. Studies on the transport and life-span of amine storage granules in a peripheral adrenergic neuron system. Acta Physiol Scand. 1966 Jul-Aug;67(3):278–288. doi: 10.1111/j.1748-1716.1966.tb03313.x. [DOI] [PubMed] [Google Scholar]
  10. Dean C. R., Hope D. B. The isolation of neurophysin-I and-II from bovine pituitary neurosecretory granules separated on a large scale from other subcellular organelles. Demonstration of slow equilibration of neurosecretory granules during centrifugation in a sucrose density gradient. Biochem J. 1968 Jan;106(2):565–573. doi: 10.1042/bj1060565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dean C. R., Hope D. B. The isolation of purified neurosecretory granules from bovine pituitary posterior lobes. Comparison of granule protein constituents with those of neurophysin. Biochem J. 1967 Sep;104(3):1082–1088. doi: 10.1042/bj1041082. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Douglas W. W., Ishida A., Poisner A. M. The effect of metabolic inhibitors on the release of vasopressin from the isolated neurohypophysis. J Physiol. 1965 Dec;181(4):753–759. doi: 10.1113/jphysiol.1965.sp007795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Emmelot P., Bos C. J. Studies on plasma membranes. 3. Mg2+-ATPase,(Na+-K+-Mg2+)-ATPase and 5'-nucleotidase activity of plasma membranes isolated from rat liver. Biochim Biophys Acta. 1966 Jul 13;120(3):369–382. doi: 10.1016/0926-6585(66)90304-9. [DOI] [PubMed] [Google Scholar]
  14. Fernando D. A. A histochemical study of adenosine triphosphatase activity in the peripheral nerve fibres of the cat. Acta Anat (Basel) 1972;81(1):30–35. doi: 10.1159/000143741. [DOI] [PubMed] [Google Scholar]
  15. French P. C., Holmsen H., Stormorken H. Adenine nucleotide metabolism of blood platelets. VII. ATPases: subcellular localization and behaviour during the thrombin-platelet interaction. Biochim Biophys Acta. 1970 Jun 10;206(3):438–448. doi: 10.1016/0005-2744(70)90159-2. [DOI] [PubMed] [Google Scholar]
  16. Germain M., Proulx P. Adenosinetriphosphatase activity in synaptic vesicles of rat brain. Biochem Pharmacol. 1965 Dec;14(12):1815–1819. doi: 10.1016/0006-2952(65)90271-6. [DOI] [PubMed] [Google Scholar]
  17. Goz B. Properties of a microsomal adenosine triphosphatase from the adrenal medulla. Biochem Pharmacol. 1967 Mar;16(3):593–596. doi: 10.1016/0006-2952(67)90109-8. [DOI] [PubMed] [Google Scholar]
  18. HILLARP N. A. Enzymic systems involving adenosinephosphates in the adrenaline and noradrenaline containing granules of the adrenal medulla. Acta Physiol Scand. 1958 Feb 4;42(2):144–165. doi: 10.1111/j.1748-1716.1958.tb01548.x. [DOI] [PubMed] [Google Scholar]
  19. Heinrich P., Da Prada M., Pletscher A. Magnesium-dependent ATP-ase in membranes of 5-hydroxytryptamine storage organelles. Biochem Biophys Res Commun. 1972 Mar 10;46(5):1769–1775. doi: 10.1016/0006-291x(72)90049-6. [DOI] [PubMed] [Google Scholar]
  20. Hollenberg M. D., Hope D. B. The isolation of the native hormone-binding proteins from bovine pituitary posterior lobes. Crystallization of neurophysin-I and-II as complexes with [8-arginine]-vasopressin. Biochem J. 1968 Jan;106(2):557–564. doi: 10.1042/bj1060557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hosie R. J. The localization of adenosine triphosphatases in morphologically characterized subcellular fractions of guinea-pig brain. Biochem J. 1965 Aug;96(2):404–412. doi: 10.1042/bj0960404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Howe A., Maxwell D. S. Electron microscopy of the pars intermedia of the pituitary gland in the rat. Gen Comp Endocrinol. 1968 Aug;11(1):169–185. doi: 10.1016/0016-6480(68)90118-4. [DOI] [PubMed] [Google Scholar]
  23. Jorgensen P. L., Skou J. C. Purification and characterization of (Na+ + K+)-ATPase. I. The influence of detergents on the activity of (Na+ + K+)-ATPase in preparations from the outer medulla of rabbit kidney. Biochim Biophys Acta. 1971 Apr 13;233(2):366–380. doi: 10.1016/0005-2736(71)90334-8. [DOI] [PubMed] [Google Scholar]
  24. Kadota K., Mori S., Imaizumi R. The properties of ATPase of synaptic vesicle fraction. J Biochem. 1967 Apr;61(4):424–432. doi: 10.1093/oxfordjournals.jbchem.a128565. [DOI] [PubMed] [Google Scholar]
  25. Kirshner N., Kirshner A. G., Kamin D. L. Adenosine triphosphatase activity of adrenal medulla catecholamine granules. Biochim Biophys Acta. 1966 Feb 14;113(2):332–335. doi: 10.1016/s0926-6593(66)80072-3. [DOI] [PubMed] [Google Scholar]
  26. Klein R. L., Lagercrantz H. ATP hydrolysis and noradrenaline transport in purified vesicles from splenic nerve trunk. Acta Physiol Scand. 1971 Sep;83(1):70–76. doi: 10.1111/j.1748-1716.1971.tb05052.x. [DOI] [PubMed] [Google Scholar]
  27. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  28. Nagayama A., Dales S. Rapid purification and the immunological specificity of mammalian microtubular paracrystals possessing an ATPase activity. Proc Natl Acad Sci U S A. 1970 Jun;66(2):464–471. doi: 10.1073/pnas.66.2.464. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Norström A., Sjöstrand J. Transport and turnover of neurohypophysial proteins of the rat. J Neurochem. 1971 Nov;18(11):2007–2016. doi: 10.1111/j.1471-4159.1971.tb05060.x. [DOI] [PubMed] [Google Scholar]
  30. Ochs S., Ranish N. Characteristics of the fast transport system in mammalian nerve fibers. J Neurobiol. 1969;1(2):247–261. doi: 10.1002/neu.480010211. [DOI] [PubMed] [Google Scholar]
  31. POST R. L., SEN A. K., ROSENTHAL A. S. A PHOSPHORYLATED INTERMEDIATE IN ADENOSINE TRIPHOSPHATE-DEPENDENT SODIUM AND POTASSIUM TRANSPORT ACROSS KIDNEY MEMBRANES. J Biol Chem. 1965 Mar;240:1437–1445. [PubMed] [Google Scholar]
  32. PULLMAN M. E., PENEFSKY H. S., DATTA A., RACKER E. Partial resolution of the enzymes catalyzing oxidative phosphorylation. I. Purification and properties of soluble dinitrophenol-stimulated adenosine triphosphatase. J Biol Chem. 1960 Nov;235:3322–3329. [PubMed] [Google Scholar]
  33. Pickup J. C., Hope D. B. Protease and ribonuclease activities in bovine pituitary lobes. Biochem J. 1971 Jun;123(2):153–162. doi: 10.1042/bj1230153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Pickup J. C., Johnston C. I., Nakamura S., Uttenthal L. O., Hope D. B. Subcellular organization of neurophysins, oxytocin, (8-lysine)-vasopressin and adenosine triphosphatase in porcine posterior pituitary lobes. Biochem J. 1973 Mar;132(3):361–371. doi: 10.1042/bj1320361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Poisner A. M., Douglas W. W. A possible mechanism of release of posterior pituitary hormones involving adenosine triphosphate and an adenosine triphosphatase in the neurosecretory granules. Mol Pharmacol. 1968 Sep;4(5):531–540. [PubMed] [Google Scholar]
  36. Poisner A. M., Douglas W. W. Adenosine triphosphate and adenosine triphosphatase in hormone-containing granules of posterior pituitary gland. Science. 1968 Apr 12;160(3824):203–204. doi: 10.1126/science.160.3824.203. [DOI] [PubMed] [Google Scholar]
  37. SKOU J. C. Preparation from mammallian brain and kidney of the enzyme system involved in active transport of Na ions and K ions. Biochim Biophys Acta. 1962 Apr 9;58:314–325. doi: 10.1016/0006-3002(62)91015-6. [DOI] [PubMed] [Google Scholar]
  38. Santolaya R. C., Bridges T. E., Lederis K. Elementary granules, small vesicles and exocytosis in the rat neurohypophysis after acute haemorrhage. Z Zellforsch Mikrosk Anat. 1972;125(3):277–288. doi: 10.1007/BF00306626. [DOI] [PubMed] [Google Scholar]
  39. Schmitt F. O. Fibrous proteins--neuronal organelles. Proc Natl Acad Sci U S A. 1968 Aug;60(4):1092–1101. doi: 10.1073/pnas.60.4.1092. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Sluga E., Tomonaga M. Darstellung und Lokalisation der Mg-ATP-ase im peripheren Nerven. Histochemie. 1970;22(3):187–197. doi: 10.1007/BF00306095. [DOI] [PubMed] [Google Scholar]
  41. Trifaró J. M., Warner M. Membranes of adrenal chromaffin granules. Solubilization and partial characterization of the Mg ++ -dependent adenosine triphosphatase. Mol Pharmacol. 1972 Mar;8(2):159–169. [PubMed] [Google Scholar]
  42. Uttenthal L. O., Livett B. G., Hope D. B. Release of neurophysin together with vasopressin by a Ca 2 dependent mechanism. Philos Trans R Soc Lond B Biol Sci. 1971 Jun 17;261(839):379–380. doi: 10.1098/rstb.1971.0068. [DOI] [PubMed] [Google Scholar]
  43. Vilhardt H., Holmer G. Lipid composition of membranes of secretory granules and plasma membranes from bovine neurohypophyses. Acta Endocrinol (Copenh) 1972 Dec;71(4):638–648. doi: 10.1530/acta.0.0710638. [DOI] [PubMed] [Google Scholar]
  44. Vilhardt H., Tondevold E. Studies on isolated secretory granules from bovine neurohypophyses. Distribution of labelled granules on a density gradient. Release of tritiated lysine-vasopressin and endogenous arginine-vasopressin during stimulation procedures. Acta Endocrinol (Copenh) 1972 Aug;70(4):625–635. [PubMed] [Google Scholar]
  45. Vilhardt H. Vasopressin content and neurosecretory material in the hypothalamo-neurohypophyseal system of rats under different states of water metabolism. Acta Endocrinol (Copenh) 1970 Apr;63(4):585–594. doi: 10.1530/acta.0.0630585. [DOI] [PubMed] [Google Scholar]
  46. WACHSTEIN M., MEISEL E. Histochemistry of hepatic phosphatases of a physiologic pH; with special reference to the demonstration of bile canaliculi. Am J Clin Pathol. 1957 Jan;27(1):13–23. doi: 10.1093/ajcp/27.1.13. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES