Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1974 Oct;143(1):191–195. doi: 10.1042/bj1430191

Polyribosomal and particulate distribution of lysyl- and phenylalanyl-transfer ribonucleic acid synthetases

Gale Moline 1,*, Arnold Hampel 1,, M Duane Enger 1,
PMCID: PMC1168367  PMID: 4219282

Abstract

1. Only two aminoacyl-tRNA synthetases from Chinese hamster ovary cells are found associated with ribosomes and polyribosomes. 2. Phenylalanyl-tRNA synthetase activity is found with the 60S subunit, 80S monoribosome and individual polyribosomes. An additional 15S form of the enzyme is also seen. 3. Lysyl-tRNA synthetase activity is found in a form of about 20S and associated with ribosomal subunits and polyribosomes. The ribosomal subunits having lysyl-tRNA synthetase activity are about 6S larger than the bulk of the ribosomal subunits. 4. The lysyl- and phenylalanyl-tRNA synthetases found in different complexes have differential sensitivity to EDTA and centrifugation properties.

Full text

PDF
191

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adamson L. F., Herington A. C., Bornstein J. Evidence for the selection by the membrane transport system of intracellular or extracellular amino acids for protein synthesis. Biochim Biophys Acta. 1972 Sep 1;282(1):352–365. doi: 10.1016/0005-2736(72)90340-9. [DOI] [PubMed] [Google Scholar]
  2. Ayuso-Parilla M., Henshaw E. C., Hirsch C. A. The ribosome cycle in mammalian protein synthesis. 3. Evidence that the nonribosomal proteins bound to the native smaller subunit are initiation factors. J Biol Chem. 1973 Jun 25;248(12):4386–4393. [PubMed] [Google Scholar]
  3. Bandyopadhyay A. K., Deutscher M. P. Complex of aminoacyl-transfer RNA synthetases. J Mol Biol. 1971 Aug 28;60(1):113–122. doi: 10.1016/0022-2836(71)90451-7. [DOI] [PubMed] [Google Scholar]
  4. Borun T. W., Scharff M. D., Robbins E. Preparation of mammalian polyribosomes with the detergent Nonidet P-40. Biochim Biophys Acta. 1967 Nov 21;149(1):302–304. doi: 10.1016/0005-2787(67)90715-0. [DOI] [PubMed] [Google Scholar]
  5. Geels J., Bont W. S., Rezelman G. Isolation from rat liver of all aminoacyl-tRNA synthetases by centrifugation. Arch Biochem Biophys. 1971 Jun;144(2):773–774. doi: 10.1016/0003-9861(71)90386-9. [DOI] [PubMed] [Google Scholar]
  6. Hampel A., Enger M. D. Subcellular distribution of aminoacyl-transfer RNA synthetases in Chinese hamster ovary cell culture. J Mol Biol. 1973 Sep 15;79(2):285–293. doi: 10.1016/0022-2836(73)90006-5. [DOI] [PubMed] [Google Scholar]
  7. Irvin J. D., Hardesty B. Binding of aminoacyl transfer ribonucleic acid synthetases to ribosomes from rabbit reticulocytes. Biochemistry. 1972 May 9;11(10):1915–1920. doi: 10.1021/bi00760a028. [DOI] [PubMed] [Google Scholar]
  8. McCormick W., Penman S. Regulation of protein synthesis in HeLa cells: translation at elevated temperatures. J Mol Biol. 1969 Jan;39(2):315–333. doi: 10.1016/0022-2836(69)90320-9. [DOI] [PubMed] [Google Scholar]
  9. Roberts W. K., Coleman W. H. Particulate forms of phenylalanyl-tRNA synthetase from Ehrlich ascites cells. Biochem Biophys Res Commun. 1972 Jan 14;46(1):206–214. doi: 10.1016/0006-291x(72)90651-1. [DOI] [PubMed] [Google Scholar]
  10. Schreier M. H., Staehelin T. Initiation of eukaryotic protein synthesis: (Met-tRNA f -40S ribosome) initiation complex catalysed by purified initiation factors in the absence of mRNA. Nat New Biol. 1973 Mar 14;242(115):35–38. doi: 10.1038/newbio242035a0. [DOI] [PubMed] [Google Scholar]
  11. Schreier M. H., Staehelin T. Initiation of mammalian protein synthesis: the importance of ribosome and initiation factor quality for the efficiency of in vitro systems. J Mol Biol. 1973 Feb 19;73(3):329–349. doi: 10.1016/0022-2836(73)90346-x. [DOI] [PubMed] [Google Scholar]
  12. TJIO J. H., PUCK T. T. Genetics of somatic mammalian cells. II. Chromosomal constitution of cells in tissue culture. J Exp Med. 1958 Aug 1;108(2):259–268. doi: 10.1084/jem.108.2.259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Vaughan M. H., Hansen B. S. Control of initiation of protein synthesis in human cells. Evidence for a role of uncharged transfer ribonucleic acid. J Biol Chem. 1973 Oct 25;248(20):7087–7096. [PubMed] [Google Scholar]
  14. Vennegoor C., Bloemendal H. Occurrence and particle character of aminoacyl-tRNA synthetases in the post-microsomal fraction from rat liver. Eur J Biochem. 1972 Apr 24;26(4):462–473. doi: 10.1111/j.1432-1033.1972.tb01788.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES