Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1974 Dec;143(3):555–567. doi: 10.1042/bj1430555

Purification and properties of the trimethylamine dehydrogenase of Bacterium 4B6

John Colby 1, Leonard J Zatman 1
PMCID: PMC1168424  PMID: 4462741

Abstract

1. The trimethylamine dehydrogenase of bacterium 4B6 was purified to homogeneity as judged by analytical polyacrylamide-gel electrophoresis. The specific activity of the purified enzyme is 30-fold higher than that of crude sonic extracts. 2. The molecular weight of the enzyme is 161000. 3. The kinetic properties of the purified enzyme were studied by using an anaerobic spectrophotometric assay method allowing the determination of trimethylamine dehydrogenase activity at pH8.5, the optimum pH. The apparent Km for trimethylamine is 2.0±0.3μm and the apparent Km for the primary hydrogen acceptor, phenazine methosulphate, is 1.25mm. 4. Of 13 hydrogen acceptors tested, only Brilliant Cresyl Blue and Methylene Blue replace phenazine methosulphate. 5. A number of secondary and tertiary amines with N-methyl and/or N-ethyl groups are oxidized by the purified enzyme; primary amines and quaternary ammonium salts are not oxidized. Of the compounds that are oxidized by the purified enzyme, only trimethylamine and ethyldimethylamine support the growth of bacterium 4B6. 6. Trimethylamine dehydrogenase catalyses the anaerobic oxidative N-demethylation of trimethylamine with the formation of stoicheiometric amounts of dimethylamine and formaldehyde. Ethyldimethylamine is also oxidatively N-demethylated yielding ethylmethylamine and formaldehyde; diethylamine is oxidatively N-de-ethylated. 7. The activity of the purified enzyme is unaffected by chelating agents and carbonyl reagents, but is inhibited by some thiol-binding reagents and by Cu2+, Co2+, Ni2+, Ag+ and Hg2+. Trimethylamine dehydrogenase activity is potently inhibited by trimethylsulphonium chloride, by tetramethylammonium chloride and other quaternary ammonium salts, and by monoamine oxidase inhibitors of the substituted hydrazine and the non-hydrazine types. 8. Inhibition by the substituted hydrazines is time-dependent, is prevented by the presence of trimethylamine or trimethylamine analogues and in some cases requires the presence of the hydrogen acceptor phenazine methosulphate. The inhibition was irreversible with the four substituted hydrazines that were tested.

Full text

PDF
555

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ARMSTRONG J. M. THE MOLAR EXTINCTION COEFFICIENT OF 2,6-DICHLOROPHENOL INDOPHENOL. Biochim Biophys Acta. 1964 Apr 4;86:194–197. doi: 10.1016/0304-4165(64)90180-1. [DOI] [PubMed] [Google Scholar]
  2. Andrews P. Estimation of molecular size and molecular weights of biological compounds by gel filtration. Methods Biochem Anal. 1970;18:1–53. [PubMed] [Google Scholar]
  3. Andrews P. The gel-filtration behaviour of proteins related to their molecular weights over a wide range. Biochem J. 1965 Sep;96(3):595–606. doi: 10.1042/bj0960595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. BERGMEYER H. U. Zur Messung von Katalase-Aktivitäten. Biochem Z. 1955;327(4):255–258. [PubMed] [Google Scholar]
  5. Burger A., Nara S. In vitro inhibition studies with homogeneous monoamine oxidases. J Med Chem. 1965 Nov;8(6):859–862. doi: 10.1021/jm00330a029. [DOI] [PubMed] [Google Scholar]
  6. Chrambach A., Reisfeld R. A., Wyckoff M., Zaccari J. A procedure for rapid and sensitive staining of protein fractionated by polyacrylamide gel electrophoresis. Anal Biochem. 1967 Jul;20(1):150–154. doi: 10.1016/0003-2697(67)90272-2. [DOI] [PubMed] [Google Scholar]
  7. Clineschmidt B. V., Horita A. The monoamine oxidase catalyzed degradation of phenelzine-l-14C, an irreversible inhibitor of monoamine oxidase--I. Studies in vitro. Biochem Pharmacol. 1969 May;18(5):1011–1020. doi: 10.1016/0006-2952(69)90104-x. [DOI] [PubMed] [Google Scholar]
  8. Clineschmidt B. V., Horita A. The monoamine oxidase catalyzed degradation of phenelzine-l-14C, an irreversible inhibitor of monoamine oxidase--II. Studies in vivo. Biochem Pharmacol. 1969 May;18(5):1021–1028. doi: 10.1016/0006-2952(69)90105-1. [DOI] [PubMed] [Google Scholar]
  9. Colby J., Zatman L. J. Hexose phosphate synthese and tricarboxylic acid-cycle enzymes in bacterium 4B6, an obligate methylotroph. Biochem J. 1972 Aug;128(5):1373–1376. doi: 10.1042/bj1281373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Colby J., Zatman L. J. Trimethylamine metabolism in obligate and facultative methylotrophs. Biochem J. 1973 Jan;132(1):101–112. doi: 10.1042/bj1320101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
  12. DAVISON A. N. The mechanism of the irreversible inhibition of rat-liver monoamine oxidase by iproniazid (marsilid). Biochem J. 1957 Oct;67(2):316–322. doi: 10.1042/bj0670316. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. GREEN A. L. STUDIES ON THE MECHANISM OF INHIBITION OF MONOAMINE-OXIDASE BY HYDRAZINE DERIVATIVES. Biochem Pharmacol. 1964 Feb;13:249–261. doi: 10.1016/0006-2952(64)90143-1. [DOI] [PubMed] [Google Scholar]
  14. Good N. E., Winget G. D., Winter W., Connolly T. N., Izawa S., Singh R. M. Hydrogen ion buffers for biological research. Biochemistry. 1966 Feb;5(2):467–477. doi: 10.1021/bi00866a011. [DOI] [PubMed] [Google Scholar]
  15. Harvey N. L., Fewson C. A., Holms W. H. Apparatus for batch culture of micro-organisms. Lab Pract. 1968 Oct;17(10):1134–1136. [PubMed] [Google Scholar]
  16. Kennedy S. I., Fewson C. A. Enzymes of the mandelate pathway in Bacterium N.C.I.B. 8250. Biochem J. 1968 Apr;107(4):497–506. doi: 10.1042/bj1070497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  18. MAHLER H. R. Nature and function of metalloflavoproteins. Adv Enzymol Relat Subj Biochem. 1956;17:233–291. doi: 10.1002/9780470122624.ch6. [DOI] [PubMed] [Google Scholar]
  19. McEwen C. M., Jr, Sasaki G., Jones D. C. Human liver mitochondrial monoamine oxidase. 3. Kinetic studies concerning time-dependent inhibitions. Biochemistry. 1969 Oct;8(10):3963–3972. doi: 10.1021/bi00838a012. [DOI] [PubMed] [Google Scholar]
  20. Melani F., Farnararo M., Chiarugi V. P. Molecular aspects of the regulation of rat kidney alkaline phosphatase. Biochem J. 1971 Jan;121(1):33–40. doi: 10.1042/bj1210033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Owens J. D., Keddie R. M. The nitrogen nutrition of soil and herbage coryneform bacteria. J Appl Bacteriol. 1969 Sep;32(3):338–347. doi: 10.1111/j.1365-2672.1969.tb00981.x. [DOI] [PubMed] [Google Scholar]
  22. RACKER E. Spectrophotometric measurements of the enzymatic formation of fumaric and cis-aconitic acids. Biochim Biophys Acta. 1950 Jan;4(1-3):211–214. doi: 10.1016/0006-3002(50)90026-6. [DOI] [PubMed] [Google Scholar]
  23. REISFELD R. A., LEWIS U. J., WILLIAMS D. E. Disk electrophoresis of basic proteins and peptides on polyacrylamide gels. Nature. 1962 Jul 21;195:281–283. doi: 10.1038/195281a0. [DOI] [PubMed] [Google Scholar]
  24. ROSETT T. COOLING DEVICE FOR USE WITH A SONIC OSCILLATOR. Appl Microbiol. 1965 Mar;13:254–256. doi: 10.1128/am.13.2.254-256.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. SCHWARTZ M. A. Monoamine oxidase inhibition by isocarboxazid. J Pharmacol Exp Ther. 1962 Jan;135:1–6. [PubMed] [Google Scholar]
  26. Tipton K. F. Inhibition of monoamine oxidase by substituted hydrazines. Biochem J. 1972 Jul;128(4):913–919. doi: 10.1042/bj1280913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Tipton K. F., Spires I. P. Oxidation of 2-phenylethylhydrazine by monoamine oxidase. Biochem Pharmacol. 1972 Jan 15;21(2):268–270. doi: 10.1016/0006-2952(72)90278-x. [DOI] [PubMed] [Google Scholar]
  28. Tipton K. F., Spires I. P. The kinetics of phenethylhydrazine oxidation by monoamine oxidase. Biochem J. 1971 Nov;125(2):521–524. doi: 10.1042/bj1250521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Wagner C., Lusty S. M., Jr, Kung H. F., Rogers N. L. Preparation and properties of trimethylsulfonium-tetrahydrofolate methyltransferase. J Biol Chem. 1967 Mar 25;242(6):1287–1293. [PubMed] [Google Scholar]
  30. Wagner C., Lusty S. M., Jr, Kung H. F., Rogers N. L. Trimethylsulfonium-tetrahydrofolate methyltransferase, a novel enzyme in the utilization of 1 carbon units. J Biol Chem. 1966 Apr 25;241(8):1923–1925. [PubMed] [Google Scholar]
  31. ZELLER E. A., BARSKY J., FOUTS J. R., LAZANAS J. C. Structural requirements for the inhibition of amine oxidases. Biochem J. 1955 Mar 19;60(ANNUAL):v–v. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES