Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1974 Dec;143(3):703–715. doi: 10.1042/bj1430703

Electron-paramagnetic-resonance studies on cobalt(II) carbonic anhydrase–sulphonamide complexes

Stephen A Cockle 1,2,3, Sven Lindskog 1,2,3, Ernst Grell 1,2,3
PMCID: PMC1168439  PMID: 4376950

Abstract

Sulphonamide adducts of three Co(II) carbonic anhydrases were investigated by e.p.r. (electron paramagnetic resonance) at helium temperatures. The highly anisotropic 9 GHz spectra exhibited only three distinct features, with g values between 6.3 and 1.5. Such spectra arise from an electronic state with effective spin S′=½, indicating that the high-spin (S=3/2) ground level is split into two spin doublets differing in energy by an amount large compared with the microwave quantum, but small in relation to thermal energies at ambient temperature. This situation would occur in a tetrahedral system suffering a large rhombic distortion. Calculations based on this model accounted for apparent discrepancies in integrated spectral intensities, and yielded magnetic moments in good agreement with independent measurements, especially in the case of certain small Co(II) complexes resembling the enzyme adducts in their e.p.r. signals. Precise sets of g values, reflecting a particular co-ordination geometry, were found to be representative of each enzyme variant and the type of sulphonamide inhibitor, whether benzocyclic or heterocyclic. A series of substituted benzene sulphonamides bound to the same enzyme gave rise to closely similar spectra despite a wide range of pKi values. Thus benzocyclic and heterocyclic sulphonamides were evidently held in the active-site cleft in characteristic orientations irrespective of side chains that might considerably influence the total binding strength. Visible absorption spectra of various sulphonamide adducts at room temperature showed a similar pattern of inhibitor dependence to the e.p.r. spectra, suggesting a correspondence between the co-ordination structures in liquid and frozen solution. E.p.r. spectra of the sulphonamide complexes were remarkable not only for their range of g values, but also for their variations in line-width and spin-lattice relaxation behaviour. Addition of glycerol to the medium produced marked enhancement in resolution, owing to the creation of a more homogeneous frozen matrix. The non-uniform spin relaxation was probably a consequence of the large anisotropy in effective g tensor.

Full text

PDF
703

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chen R. F., Kernohan J. C. Combination of bovine carbonic anhydrase with a fluorescent sulfonamide. J Biol Chem. 1967 Dec 25;242(24):5813–5823. [PubMed] [Google Scholar]
  2. Chignell C. F., Starkweather D. K., Erlich R. H. The interaction of some spin-labeled sulfonamides with bovine erythrocyte carbonic anhydrase B. Biochim Biophys Acta. 1972 Jun 22;271(1):6–15. doi: 10.1016/0005-2795(72)90127-4. [DOI] [PubMed] [Google Scholar]
  3. Cockle S. A. Electron-paramagnetic-resonance studies on cobalt(II) carbonic anhydrase. Low-spin cyanide complexes. Biochem J. 1974 Mar;137(3):587–596. doi: 10.1042/bj1370587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Coleman J. E. Carbonic anhydrase-azosulfonamide complexes. Spectral properties. J Biol Chem. 1968 Sep 10;243(17):4574–4587. [PubMed] [Google Scholar]
  5. Coleman J. E., Coleman R. V. Magnetic circular dichroism of Co (II) carbonic anhydrase. J Biol Chem. 1972 Aug 10;247(15):4718–4728. [PubMed] [Google Scholar]
  6. Coleman J. E. Mechanism of action of carbonic anhydrase. Subtrate, sulfonamide, and anion binding. J Biol Chem. 1967 Nov 25;242(22):5212–5219. [PubMed] [Google Scholar]
  7. Coleman J. E. Metallocarbonic anhydrases: optical rotatory dispersion and circular dichroism. Proc Natl Acad Sci U S A. 1968 Jan;59(1):123–130. doi: 10.1073/pnas.59.1.123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Grell E., Bray R. C. Electron paramagnetic resonance spectroscopy of bovine cobalt carbonic anhydrase B. Biochim Biophys Acta. 1971 May 25;236(2):503–506. doi: 10.1016/0005-2795(71)90232-7. [DOI] [PubMed] [Google Scholar]
  9. Henderson L. E., Henriksson D. Large-scale preparation of the human carbonic anhydrases. Anal Biochem. 1973 Jan;51(1):288–296. doi: 10.1016/0003-2697(73)90477-6. [DOI] [PubMed] [Google Scholar]
  10. Kennedy F. C., Hill H. A., Kaden T. A., Vallee B. L. Electron paramagnetic resonance spectra of some active cobalt(II) substituted metalloenzymes and other cobalt(II) complexes. Biochem Biophys Res Commun. 1972 Sep 26;48(6):1533–1539. doi: 10.1016/0006-291x(72)90888-1. [DOI] [PubMed] [Google Scholar]
  11. Kernohan J. C. A method for studying the kinetics of the inhibition of carbonic anhydrase by sulphonamides. Biochim Biophys Acta. 1966 May 5;118(2):405–412. doi: 10.1016/s0926-6593(66)80049-8. [DOI] [PubMed] [Google Scholar]
  12. King R. W., Burgen A. S. Sulphonamide complexes of human carbonic anhydrases. Ultraviolet difference spectroscopy. Biochim Biophys Acta. 1970 May 26;207(2):278–285. doi: 10.1016/0005-2795(70)90020-6. [DOI] [PubMed] [Google Scholar]
  13. LINDSKOG S. Effects of pH and inhibitors on some properties related to metal binding in bovine carbonic anhydrase. J Biol Chem. 1963 Mar;238:945–951. [PubMed] [Google Scholar]
  14. LINDSKOG S. Purification and properties of bovine erythrocyte carbonic anhydrase. Biochim Biophys Acta. 1960 Apr 8;39:218–226. doi: 10.1016/0006-3002(60)90156-6. [DOI] [PubMed] [Google Scholar]
  15. Lanir A., Navon G. Nuclear magnetic resonance studies of bovine carbonic anhydrase. Binding of sulfonamides to the zinc enzyme. Biochemistry. 1971 Mar 16;10(6):1024–1032. doi: 10.1021/bi00782a014. [DOI] [PubMed] [Google Scholar]
  16. Liljas A., Kannan K. K., Bergstén P. C., Waara I., Fridborg K., Strandberg B., Carlbom U., Järup L., Lövgren S., Petef M. Crystal structure of human carbonic anhydrase C. Nat New Biol. 1972 Feb 2;235(57):131–137. doi: 10.1038/newbio235131a0. [DOI] [PubMed] [Google Scholar]
  17. Lindskog S., Thorslund A. On the interaction of bovine cobalt carbonic anhydrase with sulfonamides. Eur J Biochem. 1968 Feb;3(4):453–460. doi: 10.1111/j.1432-1033.1967.tb19552.x. [DOI] [PubMed] [Google Scholar]
  18. Lowe D. J., Lynden-Bell R. M., Bray R. C. Spin-spin interaction between molybdenum and one of the iron-sulphur systems of xanthine oxidase and its relevance to the enzymic mechanism. Biochem J. 1972 Nov;130(1):239–249. doi: 10.1042/bj1300239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Maren T. H. Carbonic anhydrase: chemistry, physiology, and inhibition. Physiol Rev. 1967 Oct;47(4):595–781. doi: 10.1152/physrev.1967.47.4.595. [DOI] [PubMed] [Google Scholar]
  20. Mushak P., Coleman J. E. Electron spin resonance studies of spin-labeled carbonic anhydrase. J Biol Chem. 1972 Jan 25;247(2):373–380. [PubMed] [Google Scholar]
  21. Nilsson A., Lindskog S. Hydrogen ion equilibria and the chemical modification of lysine and tyrosine residues in bovine carbonic anhydrase B. Eur J Biochem. 1967 Oct;2(3):309–317. doi: 10.1111/j.1432-1033.1967.tb00140.x. [DOI] [PubMed] [Google Scholar]
  22. Pocker Y., Stone J. T. The catalytic versatility of erythrocyte carbonic anhydrase. VI. Kinetic studies of noncompetitive inhibition of enzyme-catalyzed hydrolysis of p-nitrophenyl acetate. Biochemistry. 1968 Aug;7(8):2936–2945. doi: 10.1021/bi00848a034. [DOI] [PubMed] [Google Scholar]
  23. Tanford C. Protein denaturation. Adv Protein Chem. 1968;23:121–282. doi: 10.1016/s0065-3233(08)60401-5. [DOI] [PubMed] [Google Scholar]
  24. Taylor P. W., King R. W., Burgen A. S. Influence of pH on the kinetics of complex formation between aromatic sulfonamides and human carbonic anhydrase. Biochemistry. 1970 Sep 29;9(20):3894–3902. doi: 10.1021/bi00822a007. [DOI] [PubMed] [Google Scholar]
  25. Taylor P. W., King R. W., Burgen A. S. Kinetics of complex formation between human carbonic anhydrases and aromatic sulfonamides. Biochemistry. 1970 Jun 23;9(13):2638–2645. doi: 10.1021/bi00815a012. [DOI] [PubMed] [Google Scholar]
  26. Whitney P. L., Fölsch G., Nyman P. O., Malmström B. G. Inhibition of human erythrocyte carbonic anhydrase B by chloroacetyl sulfonamides with labeling of the active site. J Biol Chem. 1967 Sep 25;242(18):4206–4211. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES