Abstract
Cholest-8(14)-enol is the major radioactive component of the 4-di-demethyl sterol fraction biosynthesized from 4,4-dimethyl[2-3H2]cholest-8(14)-enol by rat liver microsomal fractions, and therefore the first steps in the biosynthesis of cholesterol from the latter compound probably involve removal of the 4-methyl groups. 4,4-Dimethylcholesta-8,14-dienol therefore is not an intermediate in this process, although its presence in the incubation medium at a concentration of 0.146mm almost completely inhibits the demethylation of 4,4-dimethyl[2-3H2]cholest-8(14)-enol. Nor is cholesta-8,14-dienol an intermediate in the conversion of cholest-8(14)-enol into cholest-7-enol and cholesterol. With 4,4-dimethyl[2-3H2]cholesta-8,14-dienol as the cholesterol precursor, 4,4-dimethylcholest-8(9)-enol becomes heavily labelled and there is very little radioactivity associated with cholesta-8,14-dienol.In this case, the most heavily labelled 4-di-demethyl sterols are cholest-7-enol and cholesterol with the former predominating. There is little or no radio-activity associated with cholest-8(14)-enol. A similar labelling pattern amongst the 4-di-demethyl sterols was observed with dihydro[14C]lanosterol as the precursor. The first step therefore in the synthesis of cholesterol from the 4,4-dimethyl[2-3H2]dienol is reduction of the Δ14(15) bond and not removal of the 4α-methyl group. Depending on the nature of the precursor, addition of the soluble fraction of the cell to the microsomal fraction resulted in a two- to four-fold stimulation of 4-di-demethyl sterol biosynthesis from the 4,4-dimethyl sterols studied. Under these conditions, 4,4-dimethylcholesta-8,14-dienol is the most efficient precursor of cholesterol and cholest-7-enol, and dihydrolanosterol is better than 4,4-dimethylcholest-8(14)-enol.
Full text
PDF









Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- CLELAND K. W., SLATER E. C. Respiratory granules of heart muscle. Biochem J. 1953 Mar;53(4):547–556. doi: 10.1042/bj0530547. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Canonica L., Fiecchi A., Kienle M. G., Scala A., Galli G., Paoletti E. G., Paoletti R. Evidence for the biological conversion of delta 8,14 sterol dienes into cholesterol. J Am Chem Soc. 1968 Nov 6;90(23):6532–6534. doi: 10.1021/ja01025a062. [DOI] [PubMed] [Google Scholar]
- Fiecchi A., Canonica L., Scala A., Cattabeni F., Paoletti E. G., Paoletti R. 4,4-dimethyl-5-alpha-cholesta-8,14-dien-3-beta-ol. A new precursor of cholesterol in mammalian tissues. Life Sci. 1969 Jun 15;8(12):629–634. doi: 10.1016/0024-3205(69)90219-7. [DOI] [PubMed] [Google Scholar]
- Fiecchi A., GAlli Kienle M., Scala A., Galli G., Grossi Paoletti E., Cattabeni F., Paoletti R. Hydrogen exchange and double bond formation in cholesterol biosynthesis. Proc R Soc Lond B Biol Sci. 1972 Feb 15;180(1059):147–165. doi: 10.1098/rspb.1972.0011. [DOI] [PubMed] [Google Scholar]
- Fiecchi A., Scala A., Cattabeni F., Grossi Paoletti E. Role of 8(14) monoene sterols in cholesterol biosynthesis. Life Sci II. 1970 Nov 8;9(21):1201–1205. doi: 10.1016/0024-3205(70)90231-6. [DOI] [PubMed] [Google Scholar]
- Fried J., Dudowitz A., Brown J. W. Enzymatic conversion of 32-oxygenated delta-7-lanosterol derivatives and of delta-8(14)-4,4-dimethyl-cholestenol to cholesterol. Biochem Biophys Res Commun. 1968 Aug 13;32(3):568–574. doi: 10.1016/0006-291x(68)90701-8. [DOI] [PubMed] [Google Scholar]
- GAUTSCHI F., BLOCH K. Synthesis of isomeric 4,4-dimethylcholestenols and identification of a lanosterol metabolite. J Biol Chem. 1958 Dec;233(6):1343–1347. [PubMed] [Google Scholar]
- Gibbons G. F., Mitropoulos K. A., Ramananda K. A method for the rapid qualitative and quantitative analysis of 4,4-dimethyl sterols. J Lipid Res. 1973 Sep;14(5):589–591. [PubMed] [Google Scholar]
- Gibbons G. F., Mitropoulos K. A. The effect of carbon monoxide on the nature of the accumulated 4,4-dimethyl sterol precursors of cholesterol during its biosynthesis from (2-14C)mevalonic acid in vitro. Biochem J. 1973 Mar;132(3):439–448. doi: 10.1042/bj1320439. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gibbons G. F., Mitropoulos K. A. The rôle of cytochrome P-450 in cholesterol biosynthesis. Eur J Biochem. 1973 Dec 3;40(1):267–273. doi: 10.1111/j.1432-1033.1973.tb03194.x. [DOI] [PubMed] [Google Scholar]
- Huntoon S., Schroepfer G. J., Jr Enzymatic conversion of cholest-8(14)-en-3 beta, 15 alpha-diol and cholest-8(14)-en-3 beta, 15 beta-diol to cholesterol. Biochem Biophys Res Commun. 1970 Jul 27;40(2):476–480. doi: 10.1016/0006-291x(70)91033-8. [DOI] [PubMed] [Google Scholar]
- KLEIN P. D., KNIGHT J. C. THE EXCHANGE LABELING OF KETO STEROIDS WITH TRITIUM BY ADSORPTION CHROMATOGRAPHY ON BASIC ALUMINA. J Am Chem Soc. 1965 Jun 20;87:2657–2661. doi: 10.1021/ja01090a023. [DOI] [PubMed] [Google Scholar]
- Lee W. H., Kammereck R., Lutsky B. N., McCloskey J. A., Schroepfer G. J. Studies on the mechanism of the enzymatic conversion of delta 8-cholesten-3 beta-ol to delta 7-cholesten-3 beta-ol. J Biol Chem. 1969 Apr 25;244(8):2033–2040. [PubMed] [Google Scholar]
- Lee W. H., Lutsky B. N., chropfer G. J., Jr 5 Alpha-cholest-8(14)-en-3 beta-ol, a possible intermediate in the biosynthesis of cholesterol. Enzymatic conversion to cholesterol and isolation from rat skin. J Biol Chem. 1969 Oct 25;244(20):5440–5448. [PubMed] [Google Scholar]
- Lee W. H., Schroepfer G. J., Jr Enzymatic conversion of delta-8(14)-cholesten-3-beta-ol to cholesterol. Biochem Biophys Res Commun. 1968 Aug 21;32(4):635–638. doi: 10.1016/0006-291x(68)90285-4. [DOI] [PubMed] [Google Scholar]
- Lutsky B. N., Schroepfer G. J., Jr Enzymatic conversion of 5alpha-cholest-8(14)-en-3beta-o1 to 5alpha-cholesta-8,14-dien-3beta-o1. Lipids. 1971 Dec;6(12):957–959. doi: 10.1007/BF02531180. [DOI] [PubMed] [Google Scholar]
- Lutsky B. N., Schroepfer G. J., Jr Enzymatic conversion of delta8, 14-cholestadien-3beta-ol to cholesterol. Biochem Biophys Res Commun. 1968 Nov 8;33(3):492–496. doi: 10.1016/0006-291x(68)90602-5. [DOI] [PubMed] [Google Scholar]
- Lutsky B. N., Schroepfer G. J., Jr Isolation of delta-8-(14)-cholesten-3-beta-o1 from rat skin. Biochem Biophys Res Commun. 1969 Apr 29;35(2):288–293. doi: 10.1016/0006-291x(69)90280-0. [DOI] [PubMed] [Google Scholar]
- Lutsky B. N., Schroepfer G. J., Jr Studies on the enzymatic conversion of 5 alpha-cholesta-8, 14-dien-3 beta-ol to cholesterol. J Biol Chem. 1970 Dec 10;245(23):6449–6455. [PubMed] [Google Scholar]
- Paoletti R., Galli G., Grossi Paoletti E., Fiecchi A., Scala A. Some pathways and mechanisms in lanosterol-cholesterol conversion in mammalian tissues. Lipids. 1971 Feb;6(2):134–138. doi: 10.1007/BF02531329. [DOI] [PubMed] [Google Scholar]
- Ritter M. C., Dempsey M. E. Specificity and role in cholesterol biosynthesis of a squalene and sterol carrier protein. J Biol Chem. 1971 Mar 10;246(5):1536–1539. [PubMed] [Google Scholar]
- Scallen T. J., Schuster M. W., Dhar A. K. Evidence for a noncatalytic carrier protein in cholesterol biosynthesis. J Biol Chem. 1971 Jan 10;246(1):224–230. [PubMed] [Google Scholar]
- Watkinson I. A., Wilton D. C., Munday K. A., Akhtar M. The formation and reduction of the 14,15-double bond in cholesterol biosynthesis. Biochem J. 1971 Jan;121(1):131–137. doi: 10.1042/bj1210131. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilton D. C. The biosynthesis of cholesta-8,14-dien-3beta-ol by Chang human liver cells. Biochem J. 1971 Dec;125(4):1153–1154. doi: 10.1042/bj1251153. [DOI] [PMC free article] [PubMed] [Google Scholar]
