Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1974 Oct;144(1):59–68. doi: 10.1042/bj1440059

The metabolic sequence by which some 4,4-dimethyl sterols are converted into cholesterol

Geoffrey F Gibbons 1
PMCID: PMC1168464  PMID: 4462576

Abstract

Cholest-8(14)-enol is the major radioactive component of the 4-di-demethyl sterol fraction biosynthesized from 4,4-dimethyl[2-3H2]cholest-8(14)-enol by rat liver microsomal fractions, and therefore the first steps in the biosynthesis of cholesterol from the latter compound probably involve removal of the 4-methyl groups. 4,4-Dimethylcholesta-8,14-dienol therefore is not an intermediate in this process, although its presence in the incubation medium at a concentration of 0.146mm almost completely inhibits the demethylation of 4,4-dimethyl[2-3H2]cholest-8(14)-enol. Nor is cholesta-8,14-dienol an intermediate in the conversion of cholest-8(14)-enol into cholest-7-enol and cholesterol. With 4,4-dimethyl[2-3H2]cholesta-8,14-dienol as the cholesterol precursor, 4,4-dimethylcholest-8(9)-enol becomes heavily labelled and there is very little radioactivity associated with cholesta-8,14-dienol.In this case, the most heavily labelled 4-di-demethyl sterols are cholest-7-enol and cholesterol with the former predominating. There is little or no radio-activity associated with cholest-8(14)-enol. A similar labelling pattern amongst the 4-di-demethyl sterols was observed with dihydro[14C]lanosterol as the precursor. The first step therefore in the synthesis of cholesterol from the 4,4-dimethyl[2-3H2]dienol is reduction of the Δ14(15) bond and not removal of the 4α-methyl group. Depending on the nature of the precursor, addition of the soluble fraction of the cell to the microsomal fraction resulted in a two- to four-fold stimulation of 4-di-demethyl sterol biosynthesis from the 4,4-dimethyl sterols studied. Under these conditions, 4,4-dimethylcholesta-8,14-dienol is the most efficient precursor of cholesterol and cholest-7-enol, and dihydrolanosterol is better than 4,4-dimethylcholest-8(14)-enol.

Full text

PDF
59

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. CLELAND K. W., SLATER E. C. Respiratory granules of heart muscle. Biochem J. 1953 Mar;53(4):547–556. doi: 10.1042/bj0530547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Canonica L., Fiecchi A., Kienle M. G., Scala A., Galli G., Paoletti E. G., Paoletti R. Evidence for the biological conversion of delta 8,14 sterol dienes into cholesterol. J Am Chem Soc. 1968 Nov 6;90(23):6532–6534. doi: 10.1021/ja01025a062. [DOI] [PubMed] [Google Scholar]
  3. Fiecchi A., Canonica L., Scala A., Cattabeni F., Paoletti E. G., Paoletti R. 4,4-dimethyl-5-alpha-cholesta-8,14-dien-3-beta-ol. A new precursor of cholesterol in mammalian tissues. Life Sci. 1969 Jun 15;8(12):629–634. doi: 10.1016/0024-3205(69)90219-7. [DOI] [PubMed] [Google Scholar]
  4. Fiecchi A., GAlli Kienle M., Scala A., Galli G., Grossi Paoletti E., Cattabeni F., Paoletti R. Hydrogen exchange and double bond formation in cholesterol biosynthesis. Proc R Soc Lond B Biol Sci. 1972 Feb 15;180(1059):147–165. doi: 10.1098/rspb.1972.0011. [DOI] [PubMed] [Google Scholar]
  5. Fiecchi A., Scala A., Cattabeni F., Grossi Paoletti E. Role of 8(14) monoene sterols in cholesterol biosynthesis. Life Sci II. 1970 Nov 8;9(21):1201–1205. doi: 10.1016/0024-3205(70)90231-6. [DOI] [PubMed] [Google Scholar]
  6. Fried J., Dudowitz A., Brown J. W. Enzymatic conversion of 32-oxygenated delta-7-lanosterol derivatives and of delta-8(14)-4,4-dimethyl-cholestenol to cholesterol. Biochem Biophys Res Commun. 1968 Aug 13;32(3):568–574. doi: 10.1016/0006-291x(68)90701-8. [DOI] [PubMed] [Google Scholar]
  7. GAUTSCHI F., BLOCH K. Synthesis of isomeric 4,4-dimethylcholestenols and identification of a lanosterol metabolite. J Biol Chem. 1958 Dec;233(6):1343–1347. [PubMed] [Google Scholar]
  8. Gibbons G. F., Mitropoulos K. A., Ramananda K. A method for the rapid qualitative and quantitative analysis of 4,4-dimethyl sterols. J Lipid Res. 1973 Sep;14(5):589–591. [PubMed] [Google Scholar]
  9. Gibbons G. F., Mitropoulos K. A. The effect of carbon monoxide on the nature of the accumulated 4,4-dimethyl sterol precursors of cholesterol during its biosynthesis from (2-14C)mevalonic acid in vitro. Biochem J. 1973 Mar;132(3):439–448. doi: 10.1042/bj1320439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gibbons G. F., Mitropoulos K. A. The rôle of cytochrome P-450 in cholesterol biosynthesis. Eur J Biochem. 1973 Dec 3;40(1):267–273. doi: 10.1111/j.1432-1033.1973.tb03194.x. [DOI] [PubMed] [Google Scholar]
  11. Huntoon S., Schroepfer G. J., Jr Enzymatic conversion of cholest-8(14)-en-3 beta, 15 alpha-diol and cholest-8(14)-en-3 beta, 15 beta-diol to cholesterol. Biochem Biophys Res Commun. 1970 Jul 27;40(2):476–480. doi: 10.1016/0006-291x(70)91033-8. [DOI] [PubMed] [Google Scholar]
  12. KLEIN P. D., KNIGHT J. C. THE EXCHANGE LABELING OF KETO STEROIDS WITH TRITIUM BY ADSORPTION CHROMATOGRAPHY ON BASIC ALUMINA. J Am Chem Soc. 1965 Jun 20;87:2657–2661. doi: 10.1021/ja01090a023. [DOI] [PubMed] [Google Scholar]
  13. Lee W. H., Kammereck R., Lutsky B. N., McCloskey J. A., Schroepfer G. J. Studies on the mechanism of the enzymatic conversion of delta 8-cholesten-3 beta-ol to delta 7-cholesten-3 beta-ol. J Biol Chem. 1969 Apr 25;244(8):2033–2040. [PubMed] [Google Scholar]
  14. Lee W. H., Lutsky B. N., chropfer G. J., Jr 5 Alpha-cholest-8(14)-en-3 beta-ol, a possible intermediate in the biosynthesis of cholesterol. Enzymatic conversion to cholesterol and isolation from rat skin. J Biol Chem. 1969 Oct 25;244(20):5440–5448. [PubMed] [Google Scholar]
  15. Lee W. H., Schroepfer G. J., Jr Enzymatic conversion of delta-8(14)-cholesten-3-beta-ol to cholesterol. Biochem Biophys Res Commun. 1968 Aug 21;32(4):635–638. doi: 10.1016/0006-291x(68)90285-4. [DOI] [PubMed] [Google Scholar]
  16. Lutsky B. N., Schroepfer G. J., Jr Enzymatic conversion of 5alpha-cholest-8(14)-en-3beta-o1 to 5alpha-cholesta-8,14-dien-3beta-o1. Lipids. 1971 Dec;6(12):957–959. doi: 10.1007/BF02531180. [DOI] [PubMed] [Google Scholar]
  17. Lutsky B. N., Schroepfer G. J., Jr Enzymatic conversion of delta8, 14-cholestadien-3beta-ol to cholesterol. Biochem Biophys Res Commun. 1968 Nov 8;33(3):492–496. doi: 10.1016/0006-291x(68)90602-5. [DOI] [PubMed] [Google Scholar]
  18. Lutsky B. N., Schroepfer G. J., Jr Isolation of delta-8-(14)-cholesten-3-beta-o1 from rat skin. Biochem Biophys Res Commun. 1969 Apr 29;35(2):288–293. doi: 10.1016/0006-291x(69)90280-0. [DOI] [PubMed] [Google Scholar]
  19. Lutsky B. N., Schroepfer G. J., Jr Studies on the enzymatic conversion of 5 alpha-cholesta-8, 14-dien-3 beta-ol to cholesterol. J Biol Chem. 1970 Dec 10;245(23):6449–6455. [PubMed] [Google Scholar]
  20. Paoletti R., Galli G., Grossi Paoletti E., Fiecchi A., Scala A. Some pathways and mechanisms in lanosterol-cholesterol conversion in mammalian tissues. Lipids. 1971 Feb;6(2):134–138. doi: 10.1007/BF02531329. [DOI] [PubMed] [Google Scholar]
  21. Ritter M. C., Dempsey M. E. Specificity and role in cholesterol biosynthesis of a squalene and sterol carrier protein. J Biol Chem. 1971 Mar 10;246(5):1536–1539. [PubMed] [Google Scholar]
  22. Scallen T. J., Schuster M. W., Dhar A. K. Evidence for a noncatalytic carrier protein in cholesterol biosynthesis. J Biol Chem. 1971 Jan 10;246(1):224–230. [PubMed] [Google Scholar]
  23. Watkinson I. A., Wilton D. C., Munday K. A., Akhtar M. The formation and reduction of the 14,15-double bond in cholesterol biosynthesis. Biochem J. 1971 Jan;121(1):131–137. doi: 10.1042/bj1210131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Wilton D. C. The biosynthesis of cholesta-8,14-dien-3beta-ol by Chang human liver cells. Biochem J. 1971 Dec;125(4):1153–1154. doi: 10.1042/bj1251153. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES