Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1974 Oct;144(1):149–160. doi: 10.1042/bj1440149

Enzyme synthesis in the regulation of hepatic `malic' enzyme activity

Gillian Murphy 1,*, Deryck G Walker 1
PMCID: PMC1168475  PMID: 4462568

Abstract

A homogeneous preparation of `malic' enzyme (EC 1.1.1.40) from livers of thyroxine-treated rats was used to prepare in rabbits an antiserum to the enzyme that reacts monospecifically with the `malic' enzyme in livers of rats in several physiological states. Changes in enzyme activity resulting from modification of the state of the animal are hence due to an altered amount of enzyme protein. The antiserum has been used to precipitate out `malic' enzyme from heat-treated supernatant preparations of livers from both adult and neonatal rats, in a number of physiological conditions, that had been injected 30min earlier with l-[4,5-3H]leucine. The low incorporations of radioactivity into the immunoprecipitable enzyme have permitted the qualitative conclusion that changed enzyme activity in adult rats arises mainly from alterations in the rate of enzyme synthesis. The marked increase in `malic' enzyme activity that occurs naturally or as a result of thyroxine treatment of the weanling rat is likewise due to a marked increase in the rate of enzyme synthesis possibly associated with a concurrent diminished rate of enzyme degradation.

Full text

PDF
149

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akroyd P. Acrylamide gel slab electrophoresis in a simple glass cell for improved resolution and comparison of serum proteins. Anal Biochem. 1967 Jun;19(3):399–410. doi: 10.1016/0003-2697(67)90229-1. [DOI] [PubMed] [Google Scholar]
  2. Arias I. M., Doyle D., Schimke R. T. Studies on the synthesis and degradation of proteins of the endoplasmic reticulum of rat liver. J Biol Chem. 1969 Jun 25;244(12):3303–3315. [PubMed] [Google Scholar]
  3. Awdeh Z. L., Williamson A. R., Askonas B. A. Isoelectric focusing in polyacrylamide gel and its application to immunoglobulins. Nature. 1968 Jul 6;219(5149):66–67. doi: 10.1038/219066a0. [DOI] [PubMed] [Google Scholar]
  4. Beltz A. D., Reineke E. P. Thyroid secretion rate in the neonatal rat. Gen Comp Endocrinol. 1968 Feb;10(1):103–108. doi: 10.1016/0016-6480(68)90015-4. [DOI] [PubMed] [Google Scholar]
  5. Cho-Chung Y. S., Pitot H. C. Regulatory effects of nicotinamide on tryptophan pyrrolase synthesis in rat liver in vivo. Eur J Biochem. 1968 Feb;3(4):401–406. doi: 10.1111/j.1432-1033.1967.tb19543.x. [DOI] [PubMed] [Google Scholar]
  6. DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
  7. Frenkel R., Stark M. J., Stafford J., 4th Increased "malic enzyme" activity during adaptation to a low protein diet. Biochem Biophys Res Commun. 1972 Dec 18;49(6):1684–1689. doi: 10.1016/0006-291x(72)90537-2. [DOI] [PubMed] [Google Scholar]
  8. Gibson D. M., Lyons R. T., Scott D. F., Muto Y. Synthesis and degradation of the lipogenic enzymes of rat liver. Adv Enzyme Regul. 1972;10:187–204. doi: 10.1016/0065-2571(72)90014-3. [DOI] [PubMed] [Google Scholar]
  9. Greengard O. Enzymic differentiation in mammalian tissues. Essays Biochem. 1971;7:159–205. [PubMed] [Google Scholar]
  10. Greengard O., Jamdar S. C. The prematurely promoted formations of liver enzymes in suckling rats. Biochim Biophys Acta. 1971 Jun 22;237(3):476–483. doi: 10.1016/0304-4165(71)90266-2. [DOI] [PubMed] [Google Scholar]
  11. Gunn J. M., Taylor C. B. Relationships between concentration of hepatic intermediary metabolites and induction of the key glycolytic enzymes in vivo. Biochem J. 1973 Nov;136(3):455–465. doi: 10.1042/bj1360455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Haining J. L. Kinetics of induction of rat liver enzymes by glucocorticoids. Mol Pharmacol. 1970 Jul;6(4):444–447. [PubMed] [Google Scholar]
  13. Hemon P. Malate dehydrogenase (decarboxylating) (NADP) and alpha-glycerophosphate oxidase in the developing rat. Biochim Biophys Acta. 1968 Mar 25;151(3):681–683. doi: 10.1016/0005-2744(68)90016-8. [DOI] [PubMed] [Google Scholar]
  14. Henderson N. S. Isozymes and genetic control of NADP-malate dehydrogenase in mice. Arch Biochem Biophys. 1966 Oct;117(1):28–33. doi: 10.1016/0003-9861(66)90121-4. [DOI] [PubMed] [Google Scholar]
  15. Hsu R. Y., Lardy H. A. Pigeon liver malic enzyme. II. Isolation, crystallization, and some properties. J Biol Chem. 1967 Feb 10;242(3):520–526. [PubMed] [Google Scholar]
  16. Isoashi F., Shibayama K., Maruyama E., Aoki Y., Wada F. Immunochemical studies on malate dehydrogenase (decarboxylating) (NADP). Biochim Biophys Acta. 1971 Oct;250(1):14–24. doi: 10.1016/0005-2744(71)90115-x. [DOI] [PubMed] [Google Scholar]
  17. Kornacker M. S., Ball E. G. Citrate cleavage in adipose tissue. Proc Natl Acad Sci U S A. 1965 Sep;54(3):899–904. doi: 10.1073/pnas.54.3.899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kuehl L., Sumsion E. N. Turnover of several glycolytic enzymes in rat liver. J Biol Chem. 1970 Dec 25;245(24):6616–6623. [PubMed] [Google Scholar]
  19. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  20. Lockwood E. A., Bailey E., Taylor C. B. Factors involved in changes in hepatic lipogenesis during development of the rat. Biochem J. 1970 Jun;118(1):155–162. doi: 10.1042/bj1180155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. MARTIN R. G., AMES B. N. A method for determining the sedimentation behavior of enzymes: application to protein mixtures. J Biol Chem. 1961 May;236:1372–1379. [PubMed] [Google Scholar]
  22. Philippidis H., Hanson R. W., Reshef L., Hopgood M. F., Ballard F. J. The initial synthesis of proteins during development. Phosphoenolpyruvate carboxylase in rat liver at birth. Biochem J. 1972 Mar;126(5):1127–1134. doi: 10.1042/bj1261127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Pinto R. E., Bartley W. The effect of age and sex on glutathione reductase and glutathione peroxidase activities and on aerobic glutathione oxidation in rat liver homogenates. Biochem J. 1969 Mar;112(1):109–115. doi: 10.1042/bj1120109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. SCHIMKE R. T. THE IMPORTANCE OF BOTH SYNTHESIS AND DEGRADATION IN THE CONTROL OF ARGINASE LEVELS IN RAT LIVER. J Biol Chem. 1964 Nov;239:3808–3817. [PubMed] [Google Scholar]
  25. SEGAL H. L., KIM Y. S. GLUCOCORTICOID STIMULATION OF THE BIOSYNTHESIS OF GLUTAMIC-ALANINE TRANSAMINASE. Proc Natl Acad Sci U S A. 1963 Nov;50:912–918. doi: 10.1073/pnas.50.5.912. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. SHRAGO E., LARDY H. A., NORDLIE R. C., FOSTER D. O. METABOLIC AND HORMONAL CONTROL OF PHOSPHOENOLPYRUVATE CARBOXYKINASE AND MALIC ENZYME IN RAT LIVER. J Biol Chem. 1963 Oct;238:3188–3192. [PubMed] [Google Scholar]
  27. Saito T., Tomita K. Two types of soluble malic enzyme in rat tissues. J Biochem. 1973 Apr;73(4):803–810. doi: 10.1093/oxfordjournals.jbchem.a130143. [DOI] [PubMed] [Google Scholar]
  28. Schimke R. T., Doyle D. Control of enzyme levels in animal tissues. Annu Rev Biochem. 1970;39:929–976. doi: 10.1146/annurev.bi.39.070170.004433. [DOI] [PubMed] [Google Scholar]
  29. Silpananta P., Goodridge A. G. Synthesis and degradation of malic enzyme in chick liver. J Biol Chem. 1971 Sep 25;246(18):5754–5761. [PubMed] [Google Scholar]
  30. Tarentino A. L., Richert D. A., Westerfeld W. W. The concurrent induction of hepatic alpha-glycerophosphate dehydrogenase and malate dehydrogenase by thyroid hormone. Biochim Biophys Acta. 1966 Aug 24;124(2):205–309. [PubMed] [Google Scholar]
  31. Vernon R. G., Walker D. G. Adaptive behaviour of some enzymes involved in glucose utilization and formation in rat liver during the weaning period. Biochem J. 1968 Jan;106(2):331–338. doi: 10.1042/bj1060331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Vernon R. G., Walker D. G. Changes in activity of some enzymes involved in glucose utilization and formation in developing rat liver. Biochem J. 1968 Jan;106(2):321–329. doi: 10.1042/bj1060321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. WISE E. M., Jr, BALL E. G. MALIC ENZYME AND LIPOGENESIS. Proc Natl Acad Sci U S A. 1964 Nov;52:1255–1263. doi: 10.1073/pnas.52.5.1255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Wada F., Maruyama E., Shibayama K., Sakamoto Y. Physiological role of malic enzymes in the liver. J Biochem. 1968 Jun;63(6):805–807. doi: 10.1093/oxfordjournals.jbchem.a128849. [DOI] [PubMed] [Google Scholar]
  35. Walker D. G., Eaton S. W. Regulation of development of hepatic glucokinase in the neonatal rat by the diet. Biochem J. 1967 Nov;105(2):771–777. doi: 10.1042/bj1050771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES