Abstract
Resealed chromaffin-granule `ghosts' were used to study the steady-state kinetics of catecholamine transport. The pump has a high affinity for (−)-noradrenaline, (−)-adrenaline, tyramine and 5-hydroxytryptamine (serotonin), but a lower affinity for (+)-noradrenaline. The measured rates of incorporation do not conform to Michaelis–Menten kinetics, but affinity constants for the former substrates are in the range 8–18μm. Reserpine is a potent inhibitor. Incorporation as a function of ATP concentration also fails to show simple kinetics; the affinity constant for ATP is deduced to be about 3mm at 1mm-MgCl2. Adenylyl (βγ-methylene)diphosphonate is a competitive inhibitor at low concentrations, but inhibits more strongly at high concentrations. The pump has a transition temperature at 29°C and does not seem to be identical with the Mg2+-stimulated adenosine triphosphatase of chromaffin granules.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- BANKS P. THE ADENOSINE-TRIPHOSPHATASE ACTIVITY OF ADRENAL CHROMAFFIN GRANULES. Biochem J. 1965 May;95:490–496. doi: 10.1042/bj0950490. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DIXON M. The determination of enzyme inhibitor constants. Biochem J. 1953 Aug;55(1):170–171. doi: 10.1042/bj0550170. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Green H. O., Slotkin T. A. Reserpine-like effects of harmine on isolated adrenal medullary vesicles. Mol Pharmacol. 1973 Nov;9(6):748–755. [PubMed] [Google Scholar]
- Hoffman P. G., Tosteson D. C. Active sodium and potassium transport in high potassium and low potassium sheep red cells. J Gen Physiol. 1971 Oct;58(4):438–466. doi: 10.1085/jgp.58.4.438. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KIRSHNER N. Uptake of catecholamines by a particulate fraction of the adrenal medulla. J Biol Chem. 1962 Jul;237:2311–2317. [PubMed] [Google Scholar]
- Kaback H. R. The role of the phosphoenolpyruvate-phosphotransferase system in the transport of sugars by isolated membrane preparations of Escherichia coli. J Biol Chem. 1968 Jul 10;243(13):3711–3724. [PubMed] [Google Scholar]
- Kirshner N., Kirshner A. G., Kamin D. L. Adenosine triphosphatase activity of adrenal medulla catecholamine granules. Biochim Biophys Acta. 1966 Feb 14;113(2):332–335. doi: 10.1016/s0926-6593(66)80072-3. [DOI] [PubMed] [Google Scholar]
- Levitzki A., Koshland D. E., Jr Negative cooperativity in regulatory enzymes. Proc Natl Acad Sci U S A. 1969 Apr;62(4):1121–1128. doi: 10.1073/pnas.62.4.1121. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levitzki A., Stallcup W. B., Koshland D. E., Jr Half-of-the-sites reactivity and the conformational states of cytidine triphosphate synthetase. Biochemistry. 1971 Aug 31;10(18):3371–3378. doi: 10.1021/bi00794a009. [DOI] [PubMed] [Google Scholar]
- MacLennan D. H., Wong P. T. Isolation of a calcium-sequestering protein from sarcoplasmic reticulum. Proc Natl Acad Sci U S A. 1971 Jun;68(6):1231–1235. doi: 10.1073/pnas.68.6.1231. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Minter B. F., Crawford N. Subcellular distribution of reserpine and 5-hydroxytryptamine in blood platelets after treatment with reserpine in vitro and in vivo. Biochem Pharmacol. 1974 Jan 15;23(2):351–367. doi: 10.1016/0006-2952(74)90426-2. [DOI] [PubMed] [Google Scholar]
- Phillips J. H. Transport of catecholamines by resealed chromaffin-grnaule "ghosts". Biochem J. 1974 Nov;144(2):311–318. doi: 10.1042/bj1440311. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Slotkin T. A., Ferris R. M., Kirshner N. Compartmental analysis of amine storage in bovine adrenal medullary granules. Mol Pharmacol. 1971 May;7(3):308–316. [PubMed] [Google Scholar]
- Stallcup W. B., Koshland D. E., Jr Half-of-the sites reactivity and negative co-operativity: the case of yeast glyceraldehyde 3-phosphate dehydrogenase. J Mol Biol. 1973 Oct 15;80(1):41–62. doi: 10.1016/0022-2836(73)90232-5. [DOI] [PubMed] [Google Scholar]
- Stjärne L., von Euler U. S. Sterospecificity of amine uptake mechanism in nerve granules. J Pharmacol Exp Ther. 1965 Dec;150(3):335–340. [PubMed] [Google Scholar]
- Taugner G. The effects of univalent anions on catecholamine fluxes and adenosine triphosphatase activity in storage vesicles from the adrenal medulla. Biochem J. 1972 Dec;130(4):969–973. doi: 10.1042/bj1300969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taugner G. The membrane of catecholamine storage vesicles of adrenal medulla. Catecholamines fluxes and ATPase activity. Naunyn Schmiedebergs Arch Pharmakol. 1971;270(4):392–406. [PubMed] [Google Scholar]
- Taugner G. The membrane of catecholamine storage vesicles of adrenal medulla. Uptake and release of noradrenaline in relation to the pH and the concentration and steric configuration of the amine present in the medium. Naunyn Schmiedebergs Arch Pharmacol. 1972;274(3):299–314. doi: 10.1007/BF00501939. [DOI] [PubMed] [Google Scholar]
- von Euler U. S., Lishajko F. Reuptake and net uptake of noradrenaline in adrenergic nerve granules with a note on the affinity for 1- and d-isomers. Acta Physiol Scand. 1967 Oct-Nov;71(2):151–162. doi: 10.1111/j.1748-1716.1967.tb03721.x. [DOI] [PubMed] [Google Scholar]