Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1974 Dec;144(3):519–531. doi: 10.1042/bj1440519

Regulation of hepatic l-serine dehydratase and l-serine-pyruvate aminotransferase in the developing neonatal rat

Keith Snell 1,*, Deryck G Walker 1
PMCID: PMC1168530  PMID: 4377655

Abstract

1. The activities of l-serine dehydratase and l-serine–pyruvate aminotransferase were determined in rat liver during foetal and neonatal development. 2. l-Serine–pyruvate aminotransferase activity begins to develop in late-foetal liver, increases rapidly at birth to a peak during suckling and then decreases at weaning to the adult value. 3. l-Serine dehydratase activity is very low prenatally, but increases rapidly after birth to a transient peak. After a second transient peak around the time weaning begins, activity gradually rises to the adult value. Both of these peaks have similar isoenzyme compositions. 4. In foetal liver both l-serine dehydratase and l-serine–pyruvate aminotransferase activities are increased after injection in utero of glucagon or dibutyryl cyclic AMP. Cycloheximide or actinomycin D inhibited the prenatal induction of both enzymes and actinomycin D blocked the natural increase of l-serine dehydratase immediately after birth. Glucose or insulin administration also blocked the perinatal increase of l-serine dehydratase. 5. After the first perinatal peak of l-serine dehydratase, activity is increased by cortisol and this is inhibited by actinomycin D. After the second postnatal peak, activity is increased by amino acids or cortisol and this is insensitive to actinomycin D inhibition. Glucose administration blocks the cortisol-stimulated increase in l-serine dehydratase and also partially lowers the second postnatal peak of activity. 6. The developmental patterns of the enzymes are discussed in relation to the pathways of gluconeogenesis from l-serine. The regulation of enzyme activity by hormonal and dietary factors is discussed with reference to the changes in stimuli that occur during neonatal development and to their possible mechanisms of action.

Full text

PDF
519

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ballard F. J., Hopgood M. F. Phosphopyruvate carboxylase induction by L-tryptophan. Effects on synthesis and degradation of the enzyme. Biochem J. 1973 Oct;136(2):259–264. doi: 10.1042/bj1360259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bojanowska K., Williamson D. H. Serine dehydratase activity in livers of phlorrhizin-treated rats and the hepatic serine plus threonine concentration. Biochim Biophys Acta. 1968 Jul 9;159(3):560–563. doi: 10.1016/0005-2744(68)90146-0. [DOI] [PubMed] [Google Scholar]
  3. Butcher F. R., Potter V. R. Control of the adenosine 3',5'-monophosphate-adenyl cyclase system in the livers of developing rats. Cancer Res. 1972 Oct;32(10):2141–2147. [PubMed] [Google Scholar]
  4. Cake M. H., Ghisalberti A. V., Oliver I. T. Cytoplasmic binding of dexamethasone and induction of tyrosine aminotransferase in neonatal rat liver. Biochem Biophys Res Commun. 1973 Oct 1;54(3):983–990. doi: 10.1016/0006-291x(73)90791-2. [DOI] [PubMed] [Google Scholar]
  5. Christoffersen T., Morland J., Osnes J. B., Oye I. Development of cyclic AMP metabolism in rat liver. A correlative study of tissue levels of cyclic AMP, accumulation of cyclic AMP in slices, adenylate cyclase activity and cyclic nucleotide phosphodiesterase activity. Biochim Biophys Acta. 1973 Jul 28;313(2):338–349. doi: 10.1016/0304-4165(73)90033-0. [DOI] [PubMed] [Google Scholar]
  6. Christophe J., Winand J., Kutzner R., Hebbelinck M. Amino acid levels in plasma, liver, muscle, and kidney during and after exercise in fasted and fed rats. Am J Physiol. 1971 Aug;221(2):453–457. doi: 10.1152/ajplegacy.1971.221.2.453. [DOI] [PubMed] [Google Scholar]
  7. Cihak A., Lamar C., Jr, Pitot H. C. L-tryptophan inhibition of tyrosine aminotransferase degradation in rat liver in vivo. Arch Biochem Biophys. 1973 May;156(1):188–194. doi: 10.1016/0003-9861(73)90356-1. [DOI] [PubMed] [Google Scholar]
  8. DAWKINS M. J. GLYCOGEN SYNTHESIS AND BREAKDOWN IN FETAL AND NEWBORN RAT LIVER. Ann N Y Acad Sci. 1963 Dec 30;111:203–211. doi: 10.1111/j.1749-6632.1963.tb36960.x. [DOI] [PubMed] [Google Scholar]
  9. Evered D. F., Roffe L. M. Liver serine dehydratase levels in the developing rat. Comp Biochem Physiol B. 1971 Jun 15;39(2):377–381. doi: 10.1016/0305-0491(71)90182-9. [DOI] [PubMed] [Google Scholar]
  10. Exton J. H., Lewis S. B., Ho R. J., Park C. R. The role of cyclic AMP in the control of hepatic glucose production by glucagon and insulin. Adv Cyclic Nucleotide Res. 1972;1:91–101. [PubMed] [Google Scholar]
  11. Girard J. R., Caquet D., Bal D., Guillet I. Control of rat liver phosphorylase, glucose-6-phosphatase and phosphoenolpyruvate carboxykinase activities by insulin and glucagon during the perinatal period. Enzyme. 1973;15(1):272–285. [PubMed] [Google Scholar]
  12. Girard J. R., Cuendet G. S., Marliss E. B., Kervran A., Rieutort M., Assan R. Fuels, hormones, and liver metabolism at term and during the early postnatal period in the rat. J Clin Invest. 1973 Dec;52(12):3190–3200. doi: 10.1172/JCI107519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Girard J. R., Kervran A., Soufflet E., Assan R. Factors affecting the secretion of insulin and glucagon by the rat fetus. Diabetes. 1974 Apr;23(4):310–317. doi: 10.2337/diab.23.4.310. [DOI] [PubMed] [Google Scholar]
  14. Girard J., Bal D., Assan R. Glucagon secretion during the early postnatal period in the rat. Horm Metab Res. 1972 May;4(3):168–170. doi: 10.1055/s-0028-1094093. [DOI] [PubMed] [Google Scholar]
  15. Goswami M. N., Boulekbache H., Meury F. Age-correlated variations of rat liver serine dehydratase and tyrosine aminotransferase activities--a comparative analysis. Comp Biochem Physiol B. 1972 Feb 15;41(2):323–330. doi: 10.1016/0305-0491(72)90034-x. [DOI] [PubMed] [Google Scholar]
  16. Greengard O., Dewey H. K. Initiation by glucagon of the premature development of tyrosine aminotransferase, serine dehydratase, and glucose-6-phosphatase in fetal rat liver. J Biol Chem. 1967 Jun 25;242(12):2986–2991. [PubMed] [Google Scholar]
  17. Greengard O., Dewey H. K. The effect of glucose ingestion on basal and induced enzyme levels in rat tissues. Biochim Biophys Acta. 1973 Dec 5;329(2):241–250. doi: 10.1016/0304-4165(73)90288-2. [DOI] [PubMed] [Google Scholar]
  18. Greengard O., Dewey H. K. The prematurely evoked synthesis of liver tryptophan oxygenase. Proc Natl Acad Sci U S A. 1971 Aug;68(8):1698–1701. doi: 10.1073/pnas.68.8.1698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Greengard O. Enzymic differentiation in mammalian tissues. Essays Biochem. 1971;7:159–205. [PubMed] [Google Scholar]
  20. Greengard O., Jamdar S. C. The prematurely promoted formations of liver enzymes in suckling rats. Biochim Biophys Acta. 1971 Jun 22;237(3):476–483. doi: 10.1016/0304-4165(71)90266-2. [DOI] [PubMed] [Google Scholar]
  21. Hancock I. C., Baddiley J. Biosynthesis of the wall teichoic acid in Bacillus licheniformis. Biochem J. 1972 Mar;127(1):27–37. doi: 10.1042/bj1270027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Hoshino J., Simon D., Kröger H. Identification of one of the L-serine dehydratase isoenzymes from rat liver as L-homoserine dehydratase. Biochem Biophys Res Commun. 1971 Aug 20;44(4):872–878. doi: 10.1016/0006-291x(71)90792-3. [DOI] [PubMed] [Google Scholar]
  23. Hurvitz A. I., Freedland R. A. Influence of dietary protein on hydrocortisone-mediated adaptive enzymatic changes in rat liver. Arch Biochem Biophys. 1968 Sep 20;127(1):548–555. doi: 10.1016/0003-9861(68)90261-0. [DOI] [PubMed] [Google Scholar]
  24. Inoue H., Kasper C. B., Pitot H. C. Studies on the induction and repression of enzymes in rat liver. VI. Some properties and the metabolic regulation of two isozymic forms of serine dehydratase. J Biol Chem. 1971 Apr 25;246(8):2626–2632. [PubMed] [Google Scholar]
  25. Inoue H., Pitot H. C. Regulation of the synthesis of serine dehydratase isozymes. Adv Enzyme Regul. 1970;8:289–296. doi: 10.1016/0065-2571(70)90024-5. [DOI] [PubMed] [Google Scholar]
  26. JOHNSON B. E., WALSH D. A., SALLACH H. J. CHANGES IN THE ACTIVITIES OF D-GLYCERATE AND D-3-PHOSPHOGLYCERATE DEHYDROGENASES IN THE DEVELOPING RAT LIVER. Biochim Biophys Acta. 1964 May 4;85:202–205. doi: 10.1016/0926-6569(64)90241-x. [DOI] [PubMed] [Google Scholar]
  27. Jamdar S. C., Greengard O. Premature formation of glucokinase in developing rat liver. J Biol Chem. 1970 Jun 10;245(11):2779–2783. [PubMed] [Google Scholar]
  28. Jost J. P., Khairallah E. A., Pitot H. C. Studies on the induction and repression of enzymes in rat liver. V. Regulation of the rate of synthesis and degradation of serine dehydratase by dietary amino acids and glucose. J Biol Chem. 1968 Jun 10;243(11):3057–3066. [PubMed] [Google Scholar]
  29. KENNEY F. T. MECHANISM OF HORMONAL CONTROL OF RAT LIVER TYROSINE TRANSAMINASE. Adv Enzyme Regul. 1963;1:137–150. doi: 10.1016/0065-2571(63)90014-1. [DOI] [PubMed] [Google Scholar]
  30. Kuster J., Zapf J., Jakob A. Effects of hormones on cyclic AMP release in perfused rat livers. FEBS Lett. 1973 May 15;32(1):73–77. doi: 10.1016/0014-5793(73)80740-9. [DOI] [PubMed] [Google Scholar]
  31. Lefauconnier J. M., Portemer C., de Billy G., Ipaktchi M., Chatagner F. Redistribution of pyridoxal phosphate in the male rat liver as a result of repeated injections of hydrocortisone. Biochim Biophys Acta. 1973 Jan 24;297(1):135–141. doi: 10.1016/0304-4165(73)90057-3. [DOI] [PubMed] [Google Scholar]
  32. Lockwood E. A., Bailey E., Taylor C. B. Factors involved in changes in hepatic lipogenesis during development of the rat. Biochem J. 1970 Jun;118(1):155–162. doi: 10.1042/bj1180155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Mauron J., Mottu F., Spohr G. Reciprocal induction and repression of serine dehydratase and phosphoglycerate dehydrogenase by proteins and dietary-essential amino acids in rat liver. Eur J Biochem. 1973 Jan 15;32(2):331–342. doi: 10.1111/j.1432-1033.1973.tb02614.x. [DOI] [PubMed] [Google Scholar]
  34. Metz T., Nogaj U., Staib W. Vergleichende Untersuchungen über den Einfluss von Chinolinsäure auf den Metabolismus von L-Serin und L-Alanin in der isoliert perfundierten Rattenleber. Hoppe Seylers Z Physiol Chem. 1972 Sep;353(9):1496–1499. [PubMed] [Google Scholar]
  35. Miura S., Nakagawa H. Studies on the molecular basis of development of serine dehydratase in rat liver. J Biochem. 1970 Oct;68(4):543–548. doi: 10.1093/oxfordjournals.jbchem.a129384. [DOI] [PubMed] [Google Scholar]
  36. Novák E., Drummond G. I., Skála J., Hahn P. Developmental changes in cyclic AMP, protein kinase, phosphorylase kinase, and phosphorylase in liver, heart, and skeletal muscle of the rat. Arch Biochem Biophys. 1972 Jun;150(2):511–518. doi: 10.1016/0003-9861(72)90069-0. [DOI] [PubMed] [Google Scholar]
  37. PERAINO C., BLAKE R. L., PITOT H. C. STUDIES ON THE INDUCTION AND REPRESSION OF ENZYMES IN RAT LIVER. 3. INDUCTION OF ORNITHINE DELTA-TRANSAMINASE AND THREONINE DEHYDRASE BY ORAL INTUBATION OF FREE AMINO ACIDS. J Biol Chem. 1965 Jul;240:3039–3043. [PubMed] [Google Scholar]
  38. PERAINO C., PITOT H. C. STUDIES ON THE INDUCTION AND REPRESSION OF ENZYMES IN RAT LIVER. II. CARBOHYDRATE REPRESSION OF DIETARY AND HORMONAL INDUCTION OF THREONINE DEHYDRASE AND ORNITHINE DELTA-TRANSAMINASE. J Biol Chem. 1964 Dec;239:4308–4313. [PubMed] [Google Scholar]
  39. PITOT H. C., PERAINO C. Carbohydrate repression of enzyme induction in rat liver. J Biol Chem. 1963 May;238:1910–1912. [PubMed] [Google Scholar]
  40. Peraino C., Lamar C., Jr, Pitot H. C. Studies on the mechanism of carbohydrate repression in rat liver. Adv Enzyme Regul. 1966;4:199–217. doi: 10.1016/0065-2571(66)90015-x. [DOI] [PubMed] [Google Scholar]
  41. Pestaña A. Dietary and hormonal control of enzymes of amino acid catabolism in liver. Eur J Biochem. 1969 Dec;11(2):400–404. doi: 10.1111/j.1432-1033.1969.tb00787.x. [DOI] [PubMed] [Google Scholar]
  42. Philippidis H., Hanson R. W., Reshef L., Hopgood M. F., Ballard F. J. The initial synthesis of proteins during development. Phosphoenolpyruvate carboxylase in rat liver at birth. Biochem J. 1972 Mar;126(5):1127–1134. doi: 10.1042/bj1261127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Reynolds R. D., Potter V. R., Pitot H. C. Response of several hepatic adaptive enzymes to a shift from low to high protein diet in intact and adrenalectomized rats. J Nutr. 1971 Jun;101(6):797–802. doi: 10.1093/jn/101.6.797. [DOI] [PubMed] [Google Scholar]
  44. Rowsell E. V., Snell K., Carnie J. A., Al-Tai A. H. Liver-L-alanine-glyoxylate and L-serine-pyruvate aminotransferase activities: an apparent association with gluconeogenesis. Biochem J. 1969 Dec;115(5):1071–1073. doi: 10.1042/bj1151071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Rowsell E. V., Snell K., Carnie J. A., Rowsell K. V. The subcellular distribution of rat liver L-alanine-glyoxylate aminotransferase in relation to a pathway for glucose formation involving glyoxylate. Biochem J. 1972 Mar;127(1):155–165. doi: 10.1042/bj1270155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Rowsell E. V., al-Tai A. H., Carnie J. A. Increased liver L-serine-pyruvate aminotransferase activity under gluconeogenic conditions. Biochem J. 1973 May;134(1):349–351. doi: 10.1042/bj1340349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Sallach H. J., Sanborn T. A., Bruin W. J. Dietary and hormonal regulation of hepatic biosynthetic and catabolic enzymes of serine metabolism in rats. Endocrinology. 1972 Oct;91(4):1054–1063. doi: 10.1210/endo-91-4-1054. [DOI] [PubMed] [Google Scholar]
  48. Schimke R. T., Sweeney E. W., Berlin C. M. Studies of the stability in vivo and in vitro of rat liver tryptophan pyrrolase. J Biol Chem. 1965 Dec;240(12):4609–4620. [PubMed] [Google Scholar]
  49. Snell K. Pathways of gluconeogenesis from L-serine in the neonatal rat. Biochem J. 1974 Aug;142(2):433–436. doi: 10.1042/bj1420433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Snell K., Walker D. G. Gluconeogenesis in the newborn rat: the substrates and their quantitative significance. Enzyme. 1973;15(1):40–81. [PubMed] [Google Scholar]
  51. Snell K., Walker D. G. Glucose metabolism in the newborn rat. Temporal studies in vivo. Biochem J. 1973 Apr;132(4):739–752. doi: 10.1042/bj1320739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Snell K., Walker D. G. The adaptive behaviour of isoenzyme forms of rat liver alanine aminotransferases during development. Biochem J. 1972 Jun;128(2):403–413. doi: 10.1042/bj1280403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Suda M., Nagai K., Nakagawa H. Studies on the circadian rhythm of phosphoenolpyruvate carboxykinase activity in rats. I. Mechanism of circadian increase in liver enzyme with special reference to hormonal and dietary effects. J Biochem. 1973 Apr;73(4):727–738. doi: 10.1093/oxfordjournals.jbchem.a130135. [DOI] [PubMed] [Google Scholar]
  54. Söling H. D., Kaplan J., Erbstoeszer M., Pitot H. C. The role of hormones in glucose repression in rat liver. Adv Enzyme Regul. 1969;7:171–182. doi: 10.1016/0065-2571(69)90017-x. [DOI] [PubMed] [Google Scholar]
  55. Treadow B. R., Khairallah E. A. Regulation of phospho-enol-pyruvate carboxykinase during starvation and glucose repression. Nat New Biol. 1972 Oct 4;239(92):131–133. doi: 10.1038/newbio239131a0. [DOI] [PubMed] [Google Scholar]
  56. Vernon R. G., Eaton S. W., Walker D. G. Carbohydrate formation from various precursors in noenatal rat liver. Biochem J. 1968 Dec;110(4):725–731. doi: 10.1042/bj1100725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Vernon R. G., Walker D. G. Adaptive behaviour of some enzymes involved in glucose utilization and formation in rat liver during the weaning period. Biochem J. 1968 Jan;106(2):331–338. doi: 10.1042/bj1060331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Walker D. G., Eaton S. W. Regulation of development of hepatic glucokinase in the neonatal rat by the diet. Biochem J. 1967 Nov;105(2):771–777. doi: 10.1042/bj1050771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Wicks W. D. Induction of hepatic enzymes by adenosine 3',5'-monophosphate in organ culture. J Biol Chem. 1969 Jul 25;244(14):3941–3950. [PubMed] [Google Scholar]
  60. Yeung D., Oliver I. T. Induction of phosphopyruvate carboxylase in neonatal rat liver by adenosine 3',5'-cyclic monophosphate. Biochemistry. 1968 Sep;7(9):3231–3239. doi: 10.1021/bi00849a028. [DOI] [PubMed] [Google Scholar]
  61. Yeung D., Oliver I. T. The postnatal induction of serine dehydratase in rat liver. Comp Biochem Physiol A Comp Physiol. 1971 Sep 1;40(1):135–144. doi: 10.1016/0300-9629(71)90156-3. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES