Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1997 Jan 15;16(2):242–251. doi: 10.1093/emboj/16.2.242

Micromolar and submicromolar Ca2+ spikes regulating distinct cellular functions in pancreatic acinar cells.

K Ito 1, Y Miyashita 1, H Kasai 1
PMCID: PMC1169631  PMID: 9029145

Abstract

Agonists induce Ca2+ spikes, waves and oscillations initiating at a trigger zone in exocrine acinar cells via Ca2+ release from intracellular Ca2+ stores. Using a low affinity ratiometric Ca2+ indicator dye, benzothiazole coumarin (BTC), we found that high concentrations of agonists transiently increased Ca2+ concentrations to the micromolar range (>10 microM) in the trigger zone. Comparison with results obtained with a high affinity Ca2+ indicator dye, fura-2, indicated that fura-2 was in fact saturated with Ca2+ during the agonist-induced Ca2+ spikes in the trigger zone. We further revealed that the micromolar Ca2+ spikes were necessary for inducing exocytosis of zymogen granules investigated using capacitance measurements. In contrast, submicromolar Ca2+ spikes selectively gave rise to sequential activation of luminal and basal ion channels. These results suggest new functional diversity in Ca2+ spikes and a critical role for the micromolar Ca2+ spikes in exocytotic secretion from exocrine acinar cells. Our data also emphasize the value of investigating the Ca2+ signalling using low affinity Ca2+ indicators.

Full Text

The Full Text of this article is available as a PDF (695.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Almers W., Neher E. The Ca signal from fura-2 loaded mast cells depends strongly on the method of dye-loading. FEBS Lett. 1985 Nov 11;192(1):13–18. doi: 10.1016/0014-5793(85)80033-8. [DOI] [PubMed] [Google Scholar]
  2. Arvan P., Castle J. D. Phasic release of newly synthesized secretory proteins in the unstimulated rat exocrine pancreas. J Cell Biol. 1987 Feb;104(2):243–252. doi: 10.1083/jcb.104.2.243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baker P. F., Knight D. E. Calcium control of exocytosis and endocytosis in bovine adrenal medullary cells. Philos Trans R Soc Lond B Biol Sci. 1981 Dec 18;296(1080):83–103. doi: 10.1098/rstb.1981.0174. [DOI] [PubMed] [Google Scholar]
  4. Bäck N., Soinila S., Virtanen I. Endocytotic pathways in the melanotroph of the rat pituitary. Histochem J. 1993 Feb;25(2):133–139. doi: 10.1007/BF00157985. [DOI] [PubMed] [Google Scholar]
  5. Chad J. E., Eckert R. Calcium domains associated with individual channels can account for anomalous voltage relations of CA-dependent responses. Biophys J. 1984 May;45(5):993–999. doi: 10.1016/S0006-3495(84)84244-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cher D. J., Padfield P. J., Jamieson J. D. Amylase release from streptolysin O permeabilized fetal pancreatic acini. Am J Physiol. 1992 Apr;262(4 Pt 1):G719–G726. doi: 10.1152/ajpgi.1992.262.4.G719. [DOI] [PubMed] [Google Scholar]
  7. Ellis-Davies G. C., Kaplan J. H. Nitrophenyl-EGTA, a photolabile chelator that selectively binds Ca2+ with high affinity and releases it rapidly upon photolysis. Proc Natl Acad Sci U S A. 1994 Jan 4;91(1):187–191. doi: 10.1073/pnas.91.1.187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fidler N., Fernandez J. M. Phase tracking: an improved phase detection technique for cell membrane capacitance measurements. Biophys J. 1989 Dec;56(6):1153–1162. doi: 10.1016/S0006-3495(89)82762-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gerasimenko O. V., Gerasimenko J. V., Belan P. V., Petersen O. H. Inositol trisphosphate and cyclic ADP-ribose-mediated release of Ca2+ from single isolated pancreatic zymogen granules. Cell. 1996 Feb 9;84(3):473–480. doi: 10.1016/s0092-8674(00)81292-1. [DOI] [PubMed] [Google Scholar]
  10. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  11. Iatridou H., Foukaraki E., Kuhn M. A., Marcus E. M., Haugland R. P., Katerinopoulos H. E. The development of a new family of intracellular calcium probes. Cell Calcium. 1994 Feb;15(2):190–198. doi: 10.1016/0143-4160(94)90058-2. [DOI] [PubMed] [Google Scholar]
  12. Kasai H., Li Y. X., Miyashita Y. Subcellular distribution of Ca2+ release channels underlying Ca2+ waves and oscillations in exocrine pancreas. Cell. 1993 Aug 27;74(4):669–677. doi: 10.1016/0092-8674(93)90514-q. [DOI] [PubMed] [Google Scholar]
  13. Knight D. E., Koh E. Ca2+ and cyclic nucleotide dependence of amylase release from isolated rat pancreatic acinar cells rendered permeable by intense electric fields. Cell Calcium. 1984 Aug;5(4):401–418. doi: 10.1016/0143-4160(84)90007-1. [DOI] [PubMed] [Google Scholar]
  14. Knoll G., Plattner H., Nordmann J. J. Exo-endocytosis in isolated peptidergic nerve terminals occurs in the sub-second range. Biosci Rep. 1992 Dec;12(6):495–501. doi: 10.1007/BF01122037. [DOI] [PubMed] [Google Scholar]
  15. Maruyama Y. Agonist-induced changes in cell membrane capacitance and conductance in dialysed pancreatic acinar cells of rats. J Physiol. 1988 Dec;406:299–313. doi: 10.1113/jphysiol.1988.sp017381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Maruyama Y., Inooka G., Li Y. X., Miyashita Y., Kasai H. Agonist-induced localized Ca2+ spikes directly triggering exocytotic secretion in exocrine pancreas. EMBO J. 1993 Aug;12(8):3017–3022. doi: 10.1002/j.1460-2075.1993.tb05970.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Meyer T., Stryer L. Transient calcium release induced by successive increments of inositol 1,4,5-trisphosphate. Proc Natl Acad Sci U S A. 1990 May;87(10):3841–3845. doi: 10.1073/pnas.87.10.3841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Muallem S., Kwiatkowska K., Xu X., Yin H. L. Actin filament disassembly is a sufficient final trigger for exocytosis in nonexcitable cells. J Cell Biol. 1995 Feb;128(4):589–598. doi: 10.1083/jcb.128.4.589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Muallem S., Pandol S. J., Beeker T. G. Hormone-evoked calcium release from intracellular stores is a quantal process. J Biol Chem. 1989 Jan 5;264(1):205–212. [PubMed] [Google Scholar]
  20. Neher E., Zucker R. S. Multiple calcium-dependent processes related to secretion in bovine chromaffin cells. Neuron. 1993 Jan;10(1):21–30. doi: 10.1016/0896-6273(93)90238-m. [DOI] [PubMed] [Google Scholar]
  21. Ninomiya Y., Kishimoto T., Miyashita Y., Kasai H. Ca2+-dependent exocytotic pathways in Chinese hamster ovary fibroblasts revealed by a caged-Ca2+ compound. J Biol Chem. 1996 Jul 26;271(30):17751–17754. doi: 10.1074/jbc.271.30.17751. [DOI] [PubMed] [Google Scholar]
  22. Padfield P. J., Panesar N. Ca(2+)-dependent amylase secretion from SLO-permeabilized rat pancreatic acini requires diffusible cytosolic proteins. Am J Physiol. 1995 Nov;269(5 Pt 1):G647–G652. doi: 10.1152/ajpgi.1995.269.5.G647. [DOI] [PubMed] [Google Scholar]
  23. Parker I., Yao Y. Relation between intracellular Ca2+ signals and Ca(2+)-activated Cl- current in Xenopus oocytes. Cell Calcium. 1994 Apr;15(4):276–288. doi: 10.1016/0143-4160(94)90067-1. [DOI] [PubMed] [Google Scholar]
  24. Petersen O. H., Petersen C. C., Kasai H. Calcium and hormone action. Annu Rev Physiol. 1994;56:297–319. doi: 10.1146/annurev.ph.56.030194.001501. [DOI] [PubMed] [Google Scholar]
  25. Rizzuto R., Brini M., Murgia M., Pozzan T. Microdomains with high Ca2+ close to IP3-sensitive channels that are sensed by neighboring mitochondria. Science. 1993 Oct 29;262(5134):744–747. doi: 10.1126/science.8235595. [DOI] [PubMed] [Google Scholar]
  26. Rosenboom H., Lindau M. Exo-endocytosis and closing of the fission pore during endocytosis in single pituitary nerve terminals internally perfused with high calcium concentrations. Proc Natl Acad Sci U S A. 1994 Jun 7;91(12):5267–5271. doi: 10.1073/pnas.91.12.5267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Tan Y. P., Marty A., Trautmann A. High density of Ca(2+)-dependent K+ and Cl- channels on the luminal membrane of lacrimal acinar cells. Proc Natl Acad Sci U S A. 1992 Dec 1;89(23):11229–11233. doi: 10.1073/pnas.89.23.11229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Thomas P., Wong J. G., Lee A. K., Almers W. A low affinity Ca2+ receptor controls the final steps in peptide secretion from pituitary melanotrophs. Neuron. 1993 Jul;11(1):93–104. doi: 10.1016/0896-6273(93)90274-u. [DOI] [PubMed] [Google Scholar]
  29. Thorn P., Lawrie A. M., Smith P. M., Gallacher D. V., Petersen O. H. Local and global cytosolic Ca2+ oscillations in exocrine cells evoked by agonists and inositol trisphosphate. Cell. 1993 Aug 27;74(4):661–668. doi: 10.1016/0092-8674(93)90513-p. [DOI] [PubMed] [Google Scholar]
  30. Toescu E. C., Lawrie A. M., Petersen O. H., Gallacher D. V. Spatial and temporal distribution of agonist-evoked cytoplasmic Ca2+ signals in exocrine acinar cells analysed by digital image microscopy. EMBO J. 1992 Apr;11(4):1623–1629. doi: 10.1002/j.1460-2075.1992.tb05208.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Zhou Z., Neher E. Mobile and immobile calcium buffers in bovine adrenal chromaffin cells. J Physiol. 1993 Sep;469:245–273. doi: 10.1113/jphysiol.1993.sp019813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Zucker R. S. Effects of photolabile calcium chelators on fluorescent calcium indicators. Cell Calcium. 1992 Jan;13(1):29–40. doi: 10.1016/0143-4160(92)90027-p. [DOI] [PubMed] [Google Scholar]
  33. van de Put F. H., De Pont J. J., Willems P. H. Heterogeneity between intracellular Ca2+ stores as the underlying principle of quantal Ca2+ release by inositol 1,4,5-trisphosphate in permeabilized pancreatic acinar cells. J Biol Chem. 1994 Apr 29;269(17):12438–12443. [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES