Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1997 Jan 15;16(2):355–368. doi: 10.1093/emboj/16.2.355

Over-expression of GATA-6 in Xenopus embryos blocks differentiation of heart precursors.

C Gove 1, M Walmsley 1, S Nijjar 1, D Bertwistle 1, M Guille 1, G Partington 1, A Bomford 1, R Patient 1
PMCID: PMC1169641  PMID: 9029155

Abstract

Xenopus GATA-6 transcripts are first detected at the beginning of gastrulation in the mesoderm, and subsequent domains of expression include the field of cells shown to have heart-forming potential. In this region, GATA-6 expression continues only in those cells that go on to form the heart; however, a decrease occurs prior to terminal differentiation. Artificial elevation of GATA-6, but not GATA-1, prevents expression of both cardiac actin and heart-specific myosin light chain. This effect is heart-specific because cardiac actin expression is unaffected in somites. Expression of the earlier marker XNkx-2.5 was unaffected and morphological development of the heart was initiated independently of the establishment of the contractile machinery. We conclude that a reduction in the level of GATA-6 is important for the progression of the cardiomyogenic differentiation programme and that GATA-6 may act to maintain heart cells in the precursor state. At later stages, when the elevated GATA-6 levels had decayed, differentiation ensued but the number of cells contributing to the myocardium had increased, suggesting either that the blocked cells had proliferated or that additional cells had been recruited.

Full Text

The Full Text of this article is available as a PDF (835.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Banville D., Williams J. G. Developmental changes in the pattern of larval beta-globin gene expression in Xenopus laevis. Identification of two early larval beta-globin mRNA sequences. J Mol Biol. 1985 Aug 20;184(4):611–620. doi: 10.1016/0022-2836(85)90307-9. [DOI] [PubMed] [Google Scholar]
  2. Bertwistle D., Walmsley M. E., Read E. M., Pizzey J. A., Patient R. K. GATA factors and the origins of adult and embryonic blood in Xenopus: responses to retinoic acid. Mech Dev. 1996 Jul;57(2):199–214. doi: 10.1016/0925-4773(96)00547-3. [DOI] [PubMed] [Google Scholar]
  3. Blobel G. A., Simon M. C., Orkin S. H. Rescue of GATA-1-deficient embryonic stem cells by heterologous GATA-binding proteins. Mol Cell Biol. 1995 Feb;15(2):626–633. doi: 10.1128/mcb.15.2.626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brewer A. C., Guille M. J., Fear D. J., Partington G. A., Patient R. K. Nuclear translocation of a maternal CCAAT factor at the start of gastrulation activates Xenopus GATA-2 transcription. EMBO J. 1995 Feb 15;14(4):757–766. doi: 10.1002/j.1460-2075.1995.tb07054.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Briegel K., Lim K. C., Plank C., Beug H., Engel J. D., Zenke M. Ectopic expression of a conditional GATA-2/estrogen receptor chimera arrests erythroid differentiation in a hormone-dependent manner. Genes Dev. 1993 Jun;7(6):1097–1109. doi: 10.1101/gad.7.6.1097. [DOI] [PubMed] [Google Scholar]
  6. Cavener D. R., Ray S. C. Eukaryotic start and stop translation sites. Nucleic Acids Res. 1991 Jun 25;19(12):3185–3192. doi: 10.1093/nar/19.12.3185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chambers A. E., Logan M., Kotecha S., Towers N., Sparrow D., Mohun T. J. The RSRF/MEF2 protein SL1 regulates cardiac muscle-specific transcription of a myosin light-chain gene in Xenopus embryos. Genes Dev. 1994 Jun 1;8(11):1324–1334. doi: 10.1101/gad.8.11.1324. [DOI] [PubMed] [Google Scholar]
  8. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  9. Griffin K., Patient R., Holder N. Analysis of FGF function in normal and no tail zebrafish embryos reveals separate mechanisms for formation of the trunk and the tail. Development. 1995 Sep;121(9):2983–2994. doi: 10.1242/dev.121.9.2983. [DOI] [PubMed] [Google Scholar]
  10. Grépin C., Dagnino L., Robitaille L., Haberstroh L., Antakly T., Nemer M. A hormone-encoding gene identifies a pathway for cardiac but not skeletal muscle gene transcription. Mol Cell Biol. 1994 May;14(5):3115–3129. doi: 10.1128/mcb.14.5.3115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Grépin C., Robitaille L., Antakly T., Nemer M. Inhibition of transcription factor GATA-4 expression blocks in vitro cardiac muscle differentiation. Mol Cell Biol. 1995 Aug;15(8):4095–4102. doi: 10.1128/mcb.15.8.4095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gurdon J. B., Wickens M. P. The use of Xenopus oocytes for the expression of cloned genes. Methods Enzymol. 1983;101:370–386. doi: 10.1016/0076-6879(83)01028-9. [DOI] [PubMed] [Google Scholar]
  13. Harland R. M. In situ hybridization: an improved whole-mount method for Xenopus embryos. Methods Cell Biol. 1991;36:685–695. doi: 10.1016/s0091-679x(08)60307-6. [DOI] [PubMed] [Google Scholar]
  14. Harland R., Misher L. Stability of RNA in developing Xenopus embryos and identification of a destabilizing sequence in TFIIIA messenger RNA. Development. 1988 Apr;102(4):837–852. doi: 10.1242/dev.102.4.837. [DOI] [PubMed] [Google Scholar]
  15. Heikinheimo M., Scandrett J. M., Wilson D. B. Localization of transcription factor GATA-4 to regions of the mouse embryo involved in cardiac development. Dev Biol. 1994 Aug;164(2):361–373. doi: 10.1006/dbio.1994.1206. [DOI] [PubMed] [Google Scholar]
  16. Igarashi K., Kataoka K., Itoh K., Hayashi N., Nishizawa M., Yamamoto M. Regulation of transcription by dimerization of erythroid factor NF-E2 p45 with small Maf proteins. Nature. 1994 Feb 10;367(6463):568–572. doi: 10.1038/367568a0. [DOI] [PubMed] [Google Scholar]
  17. Ip H. S., Wilson D. B., Heikinheimo M., Tang Z., Ting C. N., Simon M. C., Leiden J. M., Parmacek M. S. The GATA-4 transcription factor transactivates the cardiac muscle-specific troponin C promoter-enhancer in nonmuscle cells. Mol Cell Biol. 1994 Nov;14(11):7517–7526. doi: 10.1128/mcb.14.11.7517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Jiang Y., Evans T. The Xenopus GATA-4/5/6 genes are associated with cardiac specification and can regulate cardiac-specific transcription during embryogenesis. Dev Biol. 1996 Mar 15;174(2):258–270. doi: 10.1006/dbio.1996.0071. [DOI] [PubMed] [Google Scholar]
  19. Kau C. L., Turpen J. B. Dual contribution of embryonic ventral blood island and dorsal lateral plate mesoderm during ontogeny of hemopoietic cells in Xenopus laevis. J Immunol. 1983 Nov;131(5):2262–2266. [PubMed] [Google Scholar]
  20. Kelley C., Blumberg H., Zon L. I., Evans T. GATA-4 is a novel transcription factor expressed in endocardium of the developing heart. Development. 1993 Jul;118(3):817–827. doi: 10.1242/dev.118.3.817. [DOI] [PubMed] [Google Scholar]
  21. Kintner C. R., Melton D. A. Expression of Xenopus N-CAM RNA in ectoderm is an early response to neural induction. Development. 1987 Mar;99(3):311–325. doi: 10.1242/dev.99.3.311. [DOI] [PubMed] [Google Scholar]
  22. Ko L. J., Engel J. D. DNA-binding specificities of the GATA transcription factor family. Mol Cell Biol. 1993 Jul;13(7):4011–4022. doi: 10.1128/mcb.13.7.4011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Krieg P. A., Melton D. A. Functional messenger RNAs are produced by SP6 in vitro transcription of cloned cDNAs. Nucleic Acids Res. 1984 Sep 25;12(18):7057–7070. doi: 10.1093/nar/12.18.7057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Krieg P. A., Melton D. A. In vitro RNA synthesis with SP6 RNA polymerase. Methods Enzymol. 1987;155:397–415. doi: 10.1016/0076-6879(87)55027-3. [DOI] [PubMed] [Google Scholar]
  25. Laverriere A. C., MacNeill C., Mueller C., Poelmann R. E., Burch J. B., Evans T. GATA-4/5/6, a subfamily of three transcription factors transcribed in developing heart and gut. J Biol Chem. 1994 Sep 16;269(37):23177–23184. [PubMed] [Google Scholar]
  26. Leonard M., Brice M., Engel J. D., Papayannopoulou T. Dynamics of GATA transcription factor expression during erythroid differentiation. Blood. 1993 Aug 15;82(4):1071–1079. [PubMed] [Google Scholar]
  27. Mangia F., Procicchiami G., Manelli H. On the development of the blood island in Xenopus laevis embryos: light and electron microscope study. Acta Embryol Exp (Palermo) 1970;2:163–184. [PubMed] [Google Scholar]
  28. Mohun T., Garrett N., Stutz F., Sophr G. A third striated muscle actin gene is expressed during early development in the amphibian Xenopus laevis. J Mol Biol. 1988 Jul 5;202(1):67–76. doi: 10.1016/0022-2836(88)90519-0. [DOI] [PubMed] [Google Scholar]
  29. Molkentin J. D., Kalvakolanu D. V., Markham B. E. Transcription factor GATA-4 regulates cardiac muscle-specific expression of the alpha-myosin heavy-chain gene. Mol Cell Biol. 1994 Jul;14(7):4947–4957. doi: 10.1128/mcb.14.7.4947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Morrisey E. E., Ip H. S., Lu M. M., Parmacek M. S. GATA-6: a zinc finger transcription factor that is expressed in multiple cell lineages derived from lateral mesoderm. Dev Biol. 1996 Jul 10;177(1):309–322. doi: 10.1006/dbio.1996.0165. [DOI] [PubMed] [Google Scholar]
  31. Nagai T., Harigae H., Ishihara H., Motohashi H., Minegishi N., Tsuchiya S., Hayashi N., Gu L., Andres B., Engel J. D. Transcription factor GATA-2 is expressed in erythroid, early myeloid, and CD34+ human leukemia-derived cell lines. Blood. 1994 Aug 15;84(4):1074–1084. [PubMed] [Google Scholar]
  32. O'Keefe H. P., Melton D. A., Ferreiro B., Kintner C. In situ hyridization. Methods Cell Biol. 1991;36:443–463. [PubMed] [Google Scholar]
  33. Perkins N. D., Nicolas R. H., Plumb M. A., Goodwin G. H. The purification of an erythroid protein which binds to enhancer and promoter elements of haemoglobin genes. Nucleic Acids Res. 1989 Feb 25;17(4):1299–1314. doi: 10.1093/nar/17.4.1299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Plumb M., Frampton J., Wainwright H., Walker M., Macleod K., Goodwin G., Harrison P. GATAAG; a cis-control region binding an erythroid-specific nuclear factor with a role in globin and non-globin gene expression. Nucleic Acids Res. 1989 Jan 11;17(1):73–92. doi: 10.1093/nar/17.1.73. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Sargent M. G., Bennett M. F. Identification in Xenopus of a structural homologue of the Drosophila gene snail. Development. 1990 Aug;109(4):967–973. doi: 10.1242/dev.109.4.967. [DOI] [PubMed] [Google Scholar]
  36. Sater A. K., Jacobson A. G. The restriction of the heart morphogenetic field in Xenopus laevis. Dev Biol. 1990 Aug;140(2):328–336. doi: 10.1016/0012-1606(90)90083-u. [DOI] [PubMed] [Google Scholar]
  37. Sater A. K., Jacobson A. G. The specification of heart mesoderm occurs during gastrulation in Xenopus laevis. Development. 1989 Apr;105(4):821–830. doi: 10.1242/dev.105.4.821. [DOI] [PubMed] [Google Scholar]
  38. Smith J. C., Slack J. M. Dorsalization and neural induction: properties of the organizer in Xenopus laevis. J Embryol Exp Morphol. 1983 Dec;78:299–317. [PubMed] [Google Scholar]
  39. Soudais C., Bielinska M., Heikinheimo M., MacArthur C. A., Narita N., Saffitz J. E., Simon M. C., Leiden J. M., Wilson D. B. Targeted mutagenesis of the transcription factor GATA-4 gene in mouse embryonic stem cells disrupts visceral endoderm differentiation in vitro. Development. 1995 Nov;121(11):3877–3888. doi: 10.1242/dev.121.11.3877. [DOI] [PubMed] [Google Scholar]
  40. Tamura S., Wang X. H., Maeda M., Futai M. Gastric DNA-binding proteins recognize upstream sequence motifs of parietal cell-specific genes. Proc Natl Acad Sci U S A. 1993 Nov 15;90(22):10876–10880. doi: 10.1073/pnas.90.22.10876. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Tonissen K. F., Drysdale T. A., Lints T. J., Harvey R. P., Krieg P. A. XNkx-2.5, a Xenopus gene related to Nkx-2.5 and tinman: evidence for a conserved role in cardiac development. Dev Biol. 1994 Mar;162(1):325–328. doi: 10.1006/dbio.1994.1089. [DOI] [PubMed] [Google Scholar]
  42. Turner D. L., Weintraub H. Expression of achaete-scute homolog 3 in Xenopus embryos converts ectodermal cells to a neural fate. Genes Dev. 1994 Jun 15;8(12):1434–1447. doi: 10.1101/gad.8.12.1434. [DOI] [PubMed] [Google Scholar]
  43. Visvader J. E., Crossley M., Hill J., Orkin S. H., Adams J. M. The C-terminal zinc finger of GATA-1 or GATA-2 is sufficient to induce megakaryocytic differentiation of an early myeloid cell line. Mol Cell Biol. 1995 Feb;15(2):634–641. doi: 10.1128/mcb.15.2.634. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Walmsley M. E., Guille M. J., Bertwistle D., Smith J. C., Pizzey J. A., Patient R. K. Negative control of Xenopus GATA-2 by activin and noggin with eventual expression in precursors of the ventral blood islands. Development. 1994 Sep;120(9):2519–2529. doi: 10.1242/dev.120.9.2519. [DOI] [PubMed] [Google Scholar]
  45. Yamamoto M., Ko L. J., Leonard M. W., Beug H., Orkin S. H., Engel J. D. Activity and tissue-specific expression of the transcription factor NF-E1 multigene family. Genes Dev. 1990 Oct;4(10):1650–1662. doi: 10.1101/gad.4.10.1650. [DOI] [PubMed] [Google Scholar]
  46. Zhang C., Evans T. Differential regulation of the two xGATA-1 genes during Xenopus development. J Biol Chem. 1994 Jan 7;269(1):478–484. [PubMed] [Google Scholar]
  47. Zon L. I., Mather C., Burgess S., Bolce M. E., Harland R. M., Orkin S. H. Expression of GATA-binding proteins during embryonic development in Xenopus laevis. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10642–10646. doi: 10.1073/pnas.88.23.10642. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES