Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1997 Feb 17;16(4):856–865. doi: 10.1093/emboj/16.4.856

Determination of the site of first strand transfer during Moloney murine leukemia virus reverse transcription and identification of strand transfer-associated reverse transcriptase errors.

D Kulpa 1, R Topping 1, A Telesnitsky 1
PMCID: PMC1169686  PMID: 9049314

Abstract

Reverse transcriptase must perform two specialized template switches during retroviral DNA synthesis. Here, we used Moloney murine leukemia virus-based vectors to examine the site of one of these switches during intracellular reverse transcription. Consistent with original models for reverse transcription, but in contrast to previous experimental data, we observed that this first strand transfer nearly always occurred precisely at the 5' end of genomic RNA. This finding allowed us to use first strand transfer to study the classes of errors that reverse transcriptase can and/or does make when it switches templates at a defined position during viral DNA synthesis. We found that errors occurred at the site of first strand transfer approximately 1000-fold more frequently than reported average reverse transcriptase error rates for template-internal positions. We then analyzed replication products of specialized vectors that were designed to test possible origins for the switch-associated errors. Our results suggest that at least some errors arose via non-templated nucleotide addition followed by mismatch extension at the point of strand transfer. We discuss the significance of our findings as they relate to the possible contribution that template switch-associated errors may make to retroviral mutation rates.

Full Text

The Full Text of this article is available as a PDF (397.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barbosa P., Charneau P., Dumey N., Clavel F. Kinetic analysis of HIV-1 early replicative steps in a coculture system. AIDS Res Hum Retroviruses. 1994 Jan;10(1):53–59. doi: 10.1089/aid.1994.10.53. [DOI] [PubMed] [Google Scholar]
  2. Blain S. W., Goff S. P. Effects on DNA synthesis and translocation caused by mutations in the RNase H domain of Moloney murine leukemia virus reverse transcriptase. J Virol. 1995 Jul;69(7):4440–4452. doi: 10.1128/jvi.69.7.4440-4452.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Borman A. M., Quillent C., Charneau P., Kean K. M., Clavel F. A highly defective HIV-1 group O provirus: evidence for the role of local sequence determinants in G-->A hypermutation during negative-strand viral DNA synthesis. Virology. 1995 Apr 20;208(2):601–609. doi: 10.1006/viro.1995.1191. [DOI] [PubMed] [Google Scholar]
  4. Clark J. M. Novel non-templated nucleotide addition reactions catalyzed by procaryotic and eucaryotic DNA polymerases. Nucleic Acids Res. 1988 Oct 25;16(20):9677–9686. doi: 10.1093/nar/16.20.9677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Coffin J. M., Hageman T. C., Maxam A. M., Haseltine W. A. Structure of the genome of Moloney murine leukemia virus: a terminally redundant sequence. Cell. 1978 Apr;13(4):761–773. doi: 10.1016/0092-8674(78)90226-x. [DOI] [PubMed] [Google Scholar]
  6. Coffin J. M. Structure, replication, and recombination of retrovirus genomes: some unifying hypotheses. J Gen Virol. 1979 Jan;42(1):1–26. doi: 10.1099/0022-1317-42-1-1. [DOI] [PubMed] [Google Scholar]
  7. Colicelli J., Goff S. P. Sequence and spacing requirements of a retrovirus integration site. J Mol Biol. 1988 Jan 5;199(1):47–59. doi: 10.1016/0022-2836(88)90378-6. [DOI] [PubMed] [Google Scholar]
  8. Das A. T., Berkhout B. Efficient extension of a misaligned tRNA-primer during replication of the HIV-1 retrovirus. Nucleic Acids Res. 1995 Apr 25;23(8):1319–1326. doi: 10.1093/nar/23.8.1319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gabriel A., Willems M., Mules E. H., Boeke J. D. Replication infidelity during a single cycle of Ty1 retrotransposition. Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):7767–7771. doi: 10.1073/pnas.93.15.7767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gilboa E., Mitra S. W., Goff S., Baltimore D. A detailed model of reverse transcription and tests of crucial aspects. Cell. 1979 Sep;18(1):93–100. doi: 10.1016/0092-8674(79)90357-x. [DOI] [PubMed] [Google Scholar]
  11. Haseltine W. A., Coffin J. M., Hageman T. C. Structure of products of the Moloney murine leukemia virus endogenous DNA polymerase reaction. J Virol. 1979 Apr;30(1):375–383. doi: 10.1128/jvi.30.1.375-383.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hirt B. Selective extraction of polyoma DNA from infected mouse cell cultures. J Mol Biol. 1967 Jun 14;26(2):365–369. doi: 10.1016/0022-2836(67)90307-5. [DOI] [PubMed] [Google Scholar]
  13. Jones J. S., Allan R. W., Temin H. M. One retroviral RNA is sufficient for synthesis of viral DNA. J Virol. 1994 Jan;68(1):207–216. doi: 10.1128/jvi.68.1.207-216.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Klarmann G. J., Schauber C. A., Preston B. D. Template-directed pausing of DNA synthesis by HIV-1 reverse transcriptase during polymerization of HIV-1 sequences in vitro. J Biol Chem. 1993 May 5;268(13):9793–9802. [PubMed] [Google Scholar]
  15. Klaver B., Berkhout B. Premature strand transfer by the HIV-1 reverse transcriptase during strong-stop DNA synthesis. Nucleic Acids Res. 1994 Jan 25;22(2):137–144. doi: 10.1093/nar/22.2.137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kunkel T. A. Misalignment-mediated DNA synthesis errors. Biochemistry. 1990 Sep 4;29(35):8003–8011. doi: 10.1021/bi00487a001. [DOI] [PubMed] [Google Scholar]
  17. Lobel L. I., Goff S. P. Reverse transcription of retroviral genomes: mutations in the terminal repeat sequences. J Virol. 1985 Feb;53(2):447–455. doi: 10.1128/jvi.53.2.447-455.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Markowitz D., Goff S., Bank A. A safe packaging line for gene transfer: separating viral genes on two different plasmids. J Virol. 1988 Apr;62(4):1120–1124. doi: 10.1128/jvi.62.4.1120-1124.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. McCutchan J. H., Pagano J. S. Enchancement of the infectivity of simian virus 40 deoxyribonucleic acid with diethylaminoethyl-dextran. J Natl Cancer Inst. 1968 Aug;41(2):351–357. [PubMed] [Google Scholar]
  20. Monk R. J., Malik F. G., Stokesberry D., Evans L. H. Direct determination of the point mutation rate of a murine retrovirus. J Virol. 1992 Jun;66(6):3683–3689. doi: 10.1128/jvi.66.6.3683-3689.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Morgenstern J. P., Land H. Advanced mammalian gene transfer: high titre retroviral vectors with multiple drug selection markers and a complementary helper-free packaging cell line. Nucleic Acids Res. 1990 Jun 25;18(12):3587–3596. doi: 10.1093/nar/18.12.3587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Patel P. H., Preston B. D. Marked infidelity of human immunodeficiency virus type 1 reverse transcriptase at RNA and DNA template ends. Proc Natl Acad Sci U S A. 1994 Jan 18;91(2):549–553. doi: 10.1073/pnas.91.2.549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Pathak V. K., Temin H. M. Broad spectrum of in vivo forward mutations, hypermutations, and mutational hotspots in a retroviral shuttle vector after a single replication cycle: deletions and deletions with insertions. Proc Natl Acad Sci U S A. 1990 Aug;87(16):6024–6028. doi: 10.1073/pnas.87.16.6024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Peliska J. A., Benkovic S. J. Fidelity of in vitro DNA strand transfer reactions catalyzed by HIV-1 reverse transcriptase. Biochemistry. 1994 Apr 5;33(13):3890–3895. doi: 10.1021/bi00179a014. [DOI] [PubMed] [Google Scholar]
  25. Peliska J. A., Benkovic S. J. Mechanism of DNA strand transfer reactions catalyzed by HIV-1 reverse transcriptase. Science. 1992 Nov 13;258(5085):1112–1118. doi: 10.1126/science.1279806. [DOI] [PubMed] [Google Scholar]
  26. Perrino F. W., Preston B. D., Sandell L. L., Loeb L. A. Extension of mismatched 3' termini of DNA is a major determinant of the infidelity of human immunodeficiency virus type 1 reverse transcriptase. Proc Natl Acad Sci U S A. 1989 Nov;86(21):8343–8347. doi: 10.1073/pnas.86.21.8343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Preston B. D., Dougherty J. P. Mechanisms of retroviral mutation. Trends Microbiol. 1996 Jan;4(1):16–21. doi: 10.1016/0966-842x(96)81500-9. [DOI] [PubMed] [Google Scholar]
  28. Pulsinelli G. A., Temin H. M. High rate of mismatch extension during reverse transcription in a single round of retrovirus replication. Proc Natl Acad Sci U S A. 1994 Sep 27;91(20):9490–9494. doi: 10.1073/pnas.91.20.9490. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Ramsey C. A., Panganiban A. T. Replication of the retroviral terminal repeat sequence during in vivo reverse transcription. J Virol. 1993 Jul;67(7):4114–4121. doi: 10.1128/jvi.67.7.4114-4121.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Ricchetti M., Buc H. Reverse transcriptases and genomic variability: the accuracy of DNA replication is enzyme specific and sequence dependent. EMBO J. 1990 May;9(5):1583–1593. doi: 10.1002/j.1460-2075.1990.tb08278.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Roberts J. D., Preston B. D., Johnston L. A., Soni A., Loeb L. A., Kunkel T. A. Fidelity of two retroviral reverse transcriptases during DNA-dependent DNA synthesis in vitro. Mol Cell Biol. 1989 Feb;9(2):469–476. doi: 10.1128/mcb.9.2.469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Shinnick T. M., Lerner R. A., Sutcliffe J. G. Nucleotide sequence of Moloney murine leukaemia virus. Nature. 1981 Oct 15;293(5833):543–548. doi: 10.1038/293543a0. [DOI] [PubMed] [Google Scholar]
  33. Stoye J. P., Moroni C., Coffin J. M. Virological events leading to spontaneous AKR thymomas. J Virol. 1991 Mar;65(3):1273–1285. doi: 10.1128/jvi.65.3.1273-1285.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Swanstrom R., Varmus H. E., Bishop J. M. The terminal redundancy of the retrovirus genome facilitates chain elongation by reverse transcriptase. J Biol Chem. 1981 Feb 10;256(3):1115–1121. [PubMed] [Google Scholar]
  35. Telesnitsky A., Blain S., Goff S. P. Assays for retroviral reverse transcriptase. Methods Enzymol. 1995;262:347–362. doi: 10.1016/0076-6879(95)62029-x. [DOI] [PubMed] [Google Scholar]
  36. Temin H. M. Retrovirus variation and reverse transcription: abnormal strand transfers result in retrovirus genetic variation. Proc Natl Acad Sci U S A. 1993 Aug 1;90(15):6900–6903. doi: 10.1073/pnas.90.15.6900. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Volloch V. Z., Schweitzer B., Rits S. Transcription of the 5'-terminal cap nucleotide by RNA-dependent DNA polymerase: possible involvement in retroviral reverse transcription. DNA Cell Biol. 1995 Dec;14(12):991–996. doi: 10.1089/dna.1995.14.991. [DOI] [PubMed] [Google Scholar]
  38. Wigler M., Sweet R., Sim G. K., Wold B., Pellicer A., Lacy E., Maniatis T., Silverstein S., Axel R. Transformation of mammalian cells with genes from procaryotes and eucaryotes. Cell. 1979 Apr;16(4):777–785. doi: 10.1016/0092-8674(79)90093-x. [DOI] [PubMed] [Google Scholar]
  39. Wu W., Blumberg B. M., Fay P. J., Bambara R. A. Strand transfer mediated by human immunodeficiency virus reverse transcriptase in vitro is promoted by pausing and results in misincorporation. J Biol Chem. 1995 Jan 6;270(1):325–332. doi: 10.1074/jbc.270.1.325. [DOI] [PubMed] [Google Scholar]
  40. Wöhrl B. M., Georgiadis M. M., Telesnitsky A., Hendrickson W. A., Le Grice S. F. Footprint analysis of replicating murine leukemia virus reverse transcriptase. Science. 1995 Jan 6;267(5194):96–99. doi: 10.1126/science.7528942. [DOI] [PubMed] [Google Scholar]
  41. Wöhrl B. M., Tantillo C., Arnold E., Le Grice S. F. An expanded model of replicating human immunodeficiency virus reverse transcriptase. Biochemistry. 1995 Apr 25;34(16):5343–5356. doi: 10.1021/bi00016a005. [DOI] [PubMed] [Google Scholar]
  42. Xu H., Boeke J. D. High-frequency deletion between homologous sequences during retrotransposition of Ty elements in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1987 Dec;84(23):8553–8557. doi: 10.1073/pnas.84.23.8553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Zhang J., Temin H. M. Retrovirus recombination depends on the length of sequence identity and is not error prone. J Virol. 1994 Apr;68(4):2409–2414. doi: 10.1128/jvi.68.4.2409-2414.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Zinnen S., Hsieh J. C., Modrich P. Misincorporation and mispaired primer extension by human immunodeficiency virus reverse transcriptase. J Biol Chem. 1994 Sep 30;269(39):24195–24202. [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES