Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1997 Feb 17;16(4):889–895. doi: 10.1093/emboj/16.4.889

The limited strand-separating activity of the UvrAB protein complex and its role in the recognition of DNA damage.

I Gordienko 1, W D Rupp 1
PMCID: PMC1169689  PMID: 9049317

Abstract

The recognition by Escherichia coli Uvr nucleotide excision repair proteins of a variety of lesions with diverse chemical structures and the presence of helicase activity in the UvrAB complex which can displace short oligonucleotides annealed to single-stranded DNA led to a model in which this activity moves UvrAB along undamaged DNA to damaged sites where the lesion blocks further translocation and the protein-DNA pre-incision complex is formed. To evaluate this mechanism for damage recognition, we constructed substrates with oligonucleotides of different lengths annealed to single-stranded DNA circles and placed a single 2-(acetylamino)fluorene (AAF) lesion either on the oligonucleotide or on the circle. For the substrates with no lesion, the UvrAB complex effectively displaced a 22-mer but not a 27-mer or longer fragments. The presence of AAF on the oligonucleotide significantly increased the release of the 27-mer but oligomers of 30 or longer were not separated. Placing the lesion on the circular strand did not block the release of the fragments. Instead, the releasing activity of UvrAB was stimulated and also depended on the length of the annealed oligonucleotide. These observations do not agree with the predictions of a damage recognition mechanism that depends on helicase-driven translocation. Most likely, the strand-separating activity of UvrAB is a consequence of local changes occurring during the formation of a DNA-protein pre-incision complex at the damaged site and is not due to translocation of the protein along undamaged DNA to locate a lesion.

Full Text

The Full Text of this article is available as a PDF (305.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bertrand-Burggraf E., Selby C. P., Hearst J. E., Sancar A. Identification of the different intermediates in the interaction of (A)BC excinuclease with its substrates by DNase I footprinting on two uniquely modified oligonucleotides. J Mol Biol. 1991 May 5;219(1):27–36. doi: 10.1016/0022-2836(91)90854-y. [DOI] [PubMed] [Google Scholar]
  2. Caron P. R., Grossman L. Involvement of a cryptic ATPase activity of UvrB and its proteolysis product, UvrB* in DNA repair. Nucleic Acids Res. 1988 Nov 25;16(22):10891–10902. doi: 10.1093/nar/16.22.10891. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Fuchs R. P., Seeberg E. pBR322 plasmid DNA modified with 2-acetylaminofluorene derivatives: transforming activity and in vitro strand cleavage by the Escherichia coli uvrABC endonuclease. EMBO J. 1984 Apr;3(4):757–760. doi: 10.1002/j.1460-2075.1984.tb01880.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gordienko I., Rupp W. D. UvrAB activity at a damaged DNA site: is unpaired DNA present? EMBO J. 1997 Feb 17;16(4):880–888. doi: 10.1093/emboj/16.4.880. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. HANAWALT P. C., HAYNES R. H. REPAIR REPLICATION OF DNA IN BACTERIA: IRRELEVANCE OF CHEMICAL NATURE OF BASE DEFECT. Biochem Biophys Res Commun. 1965 May 3;19:462–467. doi: 10.1016/0006-291x(65)90147-6. [DOI] [PubMed] [Google Scholar]
  6. Hsu D. S., Kim S. T., Sun Q., Sancar A. Structure and function of the UvrB protein. J Biol Chem. 1995 Apr 7;270(14):8319–8327. doi: 10.1074/jbc.270.14.8319. [DOI] [PubMed] [Google Scholar]
  7. Kodadek T., Gamper H. Efficient synthesis of a supercoiled M13 DNA molecule containing a site specifically placed psoralen adduct and its use as a substrate for DNA replication. Biochemistry. 1988 May 3;27(9):3210–3215. doi: 10.1021/bi00409a013. [DOI] [PubMed] [Google Scholar]
  8. Matson S. W., Kaiser-Rogers K. A. DNA helicases. Annu Rev Biochem. 1990;59:289–329. doi: 10.1146/annurev.bi.59.070190.001445. [DOI] [PubMed] [Google Scholar]
  9. Mazur S. J., Grossman L. Dimerization of Escherichia coli UvrA and its binding to undamaged and ultraviolet light damaged DNA. Biochemistry. 1991 May 7;30(18):4432–4443. doi: 10.1021/bi00232a009. [DOI] [PubMed] [Google Scholar]
  10. Moolenaar G. F., Visse R., Ortiz-Buysse M., Goosen N., van de Putte P. Helicase motifs V and VI of the Escherichia coli UvrB protein of the UvrABC endonuclease are essential for the formation of the preincision complex. J Mol Biol. 1994 Jul 22;240(4):294–307. doi: 10.1006/jmbi.1994.1447. [DOI] [PubMed] [Google Scholar]
  11. Morris C. F., Hama-Inaba H., Mace D., Sinha N. K., Alberts B. Purification of the gene 43, 44, 45, and 62 proteins of the bacteriophage T4 DNA replication apparatus. J Biol Chem. 1979 Jul 25;254(14):6787–6796. [PubMed] [Google Scholar]
  12. Munn M. M., Rupp W. D. Interaction of the UvrABC endonuclease with DNA containing a psoralen monoadduct or cross-link. Differential effects of superhelical density and comparison of preincision complexes. J Biol Chem. 1991 Dec 25;266(36):24748–24756. [PubMed] [Google Scholar]
  13. Naegeli H., Bardwell L., Friedberg E. C. Inhibition of Rad3 DNA helicase activity by DNA adducts and abasic sites: implications for the role of a DNA helicase in damage-specific incision of DNA. Biochemistry. 1993 Jan 19;32(2):613–621. doi: 10.1021/bi00053a029. [DOI] [PubMed] [Google Scholar]
  14. Naegeli H., Bardwell L., Friedberg E. C. The DNA helicase and adenosine triphosphatase activities of yeast Rad3 protein are inhibited by DNA damage. A potential mechanism for damage-specific recognition. J Biol Chem. 1992 Jan 5;267(1):392–398. [PubMed] [Google Scholar]
  15. Oh E. Y., Grossman L. Characterization of the helicase activity of the Escherichia coli UvrAB protein complex. J Biol Chem. 1989 Jan 15;264(2):1336–1343. [PubMed] [Google Scholar]
  16. Oh E. Y., Grossman L. Helicase properties of the Escherichia coli UvrAB protein complex. Proc Natl Acad Sci U S A. 1987 Jun;84(11):3638–3642. doi: 10.1073/pnas.84.11.3638. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Orren D. K., Selby C. P., Hearst J. E., Sancar A. Post-incision steps of nucleotide excision repair in Escherichia coli. Disassembly of the UvrBC-DNA complex by helicase II and DNA polymerase I. J Biol Chem. 1992 Jan 15;267(2):780–788. [PubMed] [Google Scholar]
  18. Rush J., Lin T. C., Quinones M., Spicer E. K., Douglas I., Williams K. R., Konigsberg W. H. The 44P subunit of the T4 DNA polymerase accessory protein complex catalyzes ATP hydrolysis. J Biol Chem. 1989 Jul 5;264(19):10943–10953. [PubMed] [Google Scholar]
  19. Sancar A., Franklin K. A., Sancar G., Tang M. S. Repair of psoralen and acetylaminofluorene DNA adducts by ABC excinuclease. J Mol Biol. 1985 Aug 20;184(4):725–734. doi: 10.1016/0022-2836(85)90316-x. [DOI] [PubMed] [Google Scholar]
  20. Sancar A., Rupp W. D. A novel repair enzyme: UVRABC excision nuclease of Escherichia coli cuts a DNA strand on both sides of the damaged region. Cell. 1983 May;33(1):249–260. doi: 10.1016/0092-8674(83)90354-9. [DOI] [PubMed] [Google Scholar]
  21. Seeberg E., Fuchs R. P. Acetylaminofluorene bound to different guanines of the sequence -GGCGCC- is excised with different efficiencies by the UvrABC excision nuclease in a pattern not correlated to the potency of mutation induction. Proc Natl Acad Sci U S A. 1990 Jan;87(1):191–194. doi: 10.1073/pnas.87.1.191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Seeberg E., Steinum A. L. Purification and properties of the uvrA protein from Escherichia coli. Proc Natl Acad Sci U S A. 1982 Feb;79(4):988–992. doi: 10.1073/pnas.79.4.988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Seeley T. W., Grossman L. The role of Escherichia coli UvrB in nucleotide excision repair. J Biol Chem. 1990 May 5;265(13):7158–7165. [PubMed] [Google Scholar]
  24. Shi Q., Thresher R., Sancar A., Griffith J. Electron microscopic study of (A)BC excinuclease. DNA is sharply bent in the UvrB-DNA complex. J Mol Biol. 1992 Jul 20;226(2):425–432. doi: 10.1016/0022-2836(92)90957-l. [DOI] [PubMed] [Google Scholar]
  25. Van Houten B., Gamper H., Sancar A., Hearst J. E. DNase I footprint of ABC excinuclease. J Biol Chem. 1987 Sep 25;262(27):13180–13187. [PubMed] [Google Scholar]
  26. Visse R., King A., Moolenaar G. F., Goosen N., van de Putte P. Protein-DNA interactions and alterations in the DNA structure upon UvrB-DNA preincision complex formation during nucleotide excision repair in Escherichia coli. Biochemistry. 1994 Aug 23;33(33):9881–9888. doi: 10.1021/bi00199a009. [DOI] [PubMed] [Google Scholar]
  27. Visse R., de Ruijter M., Moolenaar G. F., van de Putte P. Analysis of UvrABC endonuclease reaction intermediates on cisplatin-damaged DNA using mobility shift gel electrophoresis. J Biol Chem. 1992 Apr 5;267(10):6736–6742. [PubMed] [Google Scholar]
  28. Yeung A. T., Mattes W. B., Grossman L. Protein complexes formed during the incision reaction catalyzed by the Escherichia coli UvrABC endonuclease. Nucleic Acids Res. 1986 Mar 25;14(6):2567–2582. doi: 10.1093/nar/14.6.2567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Yeung A. T., Mattes W. B., Oh E. Y., Grossman L. Enzymatic properties of purified Escherichia coli uvrABC proteins. Proc Natl Acad Sci U S A. 1983 Oct;80(20):6157–6161. doi: 10.1073/pnas.80.20.6157. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES