Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1997 Mar 3;16(5):908–916. doi: 10.1093/emboj/16.5.908

Identification of the molecular recognition sequence which determines the type-specific assembly of procollagen.

J F Lees 1, M Tasab 1, N J Bulleid 1
PMCID: PMC1169691  PMID: 9118952

Abstract

A key question relating to procollagen biosynthesis is the way in which closely related procollagen chains discriminate between each other to assemble in a type-specific manner. Intracellular assembly of procollagen occurs via an initial interaction between the C-propeptides followed by vectorial propagation of the triple-helical domain in the C to N direction. Recognition signals within the C-propeptides must, therefore, determine the selective association of individual procollagen chains. We have used the pro alpha1 chain of type III procollagen [pro alpha1(III)] and the pro alpha2 chain of type I procollagen [pro alpha2(I)] as examples of procollagen chains that are either capable or incapable of self-assembly. When we exchanged the C-propeptides of the pro alpha1(III) chain and the pro alpha(I) chain we demonstrated that this domain is both necessary and sufficient to direct the assembly of homotrimers with correctly aligned triple-helices. To identify the sequences within this domain that determine selective association we constructed a series of chimeric procollagen chains in which we exchanged specific sequences from the pro alpha1(III) C-propeptide with the corresponding region within the pro alpha2(I) C-propeptide (and vice versa) and assayed for the ability of these molecules to form homotrimers. Using this approach we have identified a discontinuous sequence of 15 amino acids which directs procollagen self-association. By exchanging this sequence between different procollagen chains we can direct chain association and, potentially, assemble molecules with defined chain compositions.

Full Text

The Full Text of this article is available as a PDF (634.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brass A., Kadler K. E., Thomas J. T., Grant M. E., Boot-Handford R. P. The fibrillar collagens, collagen VIII, collagen X and the C1q complement proteins share a similar domain in their C-terminal non-collagenous regions. FEBS Lett. 1992 Jun 1;303(2-3):126–128. doi: 10.1016/0014-5793(92)80503-9. [DOI] [PubMed] [Google Scholar]
  2. Bruckner P., Prockop D. J. Proteolytic enzymes as probes for the triple-helical conformation of procollagen. Anal Biochem. 1981 Jan 15;110(2):360–368. doi: 10.1016/0003-2697(81)90204-9. [DOI] [PubMed] [Google Scholar]
  3. Bulleid N. J., Wilson R., Lees J. F. Type-III procollagen assembly in semi-intact cells: chain association, nucleation and triple-helix folding do not require formation of inter-chain disulphide bonds but triple-helix nucleation does require hydroxylation. Biochem J. 1996 Jul 1;317(Pt 1):195–202. doi: 10.1042/bj3170195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bächinger H. P., Bruckner P., Timpl R., Prockop D. J., Engel J. Folding mechanism of the triple helix in type-III collagen and type-III pN-collagen. Role of disulfide bridges and peptide bond isomerization. Eur J Biochem. 1980 May;106(2):619–632. doi: 10.1111/j.1432-1033.1980.tb04610.x. [DOI] [PubMed] [Google Scholar]
  5. Bächinger H. P., Fessler L. I., Timpl R., Fessler J. H. Chain assembly intermediate in the biosynthesis of type III procollagen in chick embryo blood vessels. J Biol Chem. 1981 Dec 25;256(24):13193–13199. [PubMed] [Google Scholar]
  6. Cheah K. S., Grant M. E., Jackson D. S. Translation of type II procollagen mRNA and hydroxylation of the cell-free product. Biochem Biophys Res Commun. 1979 Dec 14;91(3):1025–1031. doi: 10.1016/0006-291x(79)91982-x. [DOI] [PubMed] [Google Scholar]
  7. Chou P. Y., Fasman G. D. Prediction of the secondary structure of proteins from their amino acid sequence. Adv Enzymol Relat Areas Mol Biol. 1978;47:45–148. doi: 10.1002/9780470122921.ch2. [DOI] [PubMed] [Google Scholar]
  8. Dion A. S., Myers J. C. COOH-terminal propeptides of the major human procollagens. Structural, functional and genetic comparisons. J Mol Biol. 1987 Jan 5;193(1):127–143. doi: 10.1016/0022-2836(87)90632-2. [DOI] [PubMed] [Google Scholar]
  9. Doege K. J., Fessler J. H. Folding of carboxyl domain and assembly of procollagen I. J Biol Chem. 1986 Jul 5;261(19):8924–8935. [PubMed] [Google Scholar]
  10. Gurevich V. V., Pokrovskaya I. D., Obukhova T. A., Zozulya S. A. Preparative in vitro mRNA synthesis using SP6 and T7 RNA polymerases. Anal Biochem. 1991 Jun;195(2):207–213. doi: 10.1016/0003-2697(91)90318-n. [DOI] [PubMed] [Google Scholar]
  11. Hojima Y., van der Rest M., Prockop D. J. Type I procollagen carboxyl-terminal proteinase from chick embryo tendons. Purification and characterization. J Biol Chem. 1985 Dec 15;260(29):15996–16003. [PubMed] [Google Scholar]
  12. Jimenez S. A., Bashey R. I., Benditt M., Yankowski R. Identification of collagen alpha1(I) trimer in embryonic chick tendons and calvaria. Biochem Biophys Res Commun. 1977 Oct 24;78(4):1354–1361. doi: 10.1016/0006-291x(77)91441-3. [DOI] [PubMed] [Google Scholar]
  13. Kessler E., Takahara K., Biniaminov L., Brusel M., Greenspan D. S. Bone morphogenetic protein-1: the type I procollagen C-proteinase. Science. 1996 Jan 19;271(5247):360–362. doi: 10.1126/science.271.5247.360. [DOI] [PubMed] [Google Scholar]
  14. Kunkel T. A., Roberts J. D., Zakour R. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 1987;154:367–382. doi: 10.1016/0076-6879(87)54085-x. [DOI] [PubMed] [Google Scholar]
  15. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  16. Lees J. F., Bulleid N. J. The role of cysteine residues in the folding and association of the COOH-terminal propeptide of types I and III procollagen. J Biol Chem. 1994 Sep 30;269(39):24354–24360. [PubMed] [Google Scholar]
  17. Moro L., Smith B. D. Identification of collagen alpha1(I) trimer and normal type I collagen in a polyoma virus-induced mouse tumor. Arch Biochem Biophys. 1977 Jul;182(1):33–41. doi: 10.1016/0003-9861(77)90280-6. [DOI] [PubMed] [Google Scholar]
  18. Olsen B. R., Hoffmann H., Prockop D. J. Interchain disulfide bonds at the COOH-terminal end of procollagen synthesized by matrix-free cells from chick embryonic tendon and cartilage. Arch Biochem Biophys. 1976 Jul;175(1):341–350. doi: 10.1016/0003-9861(76)90516-6. [DOI] [PubMed] [Google Scholar]
  19. Prockop D. J., Kivirikko K. I. Collagens: molecular biology, diseases, and potentials for therapy. Annu Rev Biochem. 1995;64:403–434. doi: 10.1146/annurev.bi.64.070195.002155. [DOI] [PubMed] [Google Scholar]
  20. Prockop D. J., Olsen A., Kontusaari S., Hyland J., Ala-Kokko L., Vasan N. S., Barton E., Buck S., Harrison K., Brent R. L. Mutations in human procollagen genes. Consequences of the mutations in man and in transgenic mice. Ann N Y Acad Sci. 1990;580:330–339. doi: 10.1111/j.1749-6632.1990.tb17942.x. [DOI] [PubMed] [Google Scholar]
  21. Schofield J. D., Uitto J., Prockop D. J. Formation of interchain disulfide bonds and helical structure during biosynthesis of procollagen by embryonic tendon cells. Biochemistry. 1974 Apr 23;13(9):1801–1806. doi: 10.1021/bi00706a004. [DOI] [PubMed] [Google Scholar]
  22. van der Rest M., Garrone R. Collagen family of proteins. FASEB J. 1991 Oct;5(13):2814–2823. [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES