Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1997 Mar 3;16(5):947–957. doi: 10.1093/emboj/16.5.947

Folate biosynthesis in higher plants: purification and molecular cloning of a bifunctional 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase/7,8-dihydropteroate synthase localized in mitochondria.

F Rébeillé 1, D Macherel 1, J M Mouillon 1, J Garin 1, R Douce 1
PMCID: PMC1169695  PMID: 9118956

Abstract

In pea leaves, the synthesis of 7,8-dihydropteroate, a primary step in folate synthesis, was only detected in mitochondria. This reaction is catalyzed by a bifunctional 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase/7,8-dihydropteroate synthase enzyme, which represented 0.04-0.06% of the matrix proteins. The enzyme had a native mol. wt of 280-300 kDa and was made up of identical subunits of 53 kDa. The reaction catalyzed by the 7,8-dihydropteroate synthase domain of the protein was Mg2+-dependent and behaved like a random bireactant system. The related cDNA contained an open reading frame of 1545 bp and the deduced amino acid sequence corresponded to a polypeptide of 515 residues with a calculated M(r) of 56,454 Da. Comparison of the deduced amino acid sequence with the N-terminal sequence of the purified protein indicated that the plant enzyme is synthesized with a putative mitochondrial transit peptide of 28 amino acids. The calculated M(r) of the mature protein was 53,450 Da. Southern blot experiments suggested that a single-copy gene codes for the enzyme. This result, together with the facts that the protein is synthesized with a mitochondrial transit peptide and that the activity was only detected in mitochondria, strongly supports the view that mitochondria is the major (unique?) site of 7,8-dihydropteroate synthesis in higher plant cells.

Full Text

The Full Text of this article is available as a PDF (670.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ballantine S. P., Volpe F., Delves C. J. The hydroxymethyldihydropterin pyrophosphokinase domain of the multifunctional folic acid synthesis Fas protein of Pneumocystis carinii expressed as an independent enzyme in Escherichia coli: refolding and characterization of the recombinant enzyme. Protein Expr Purif. 1994 Aug;5(4):371–378. doi: 10.1006/prep.1994.1054. [DOI] [PubMed] [Google Scholar]
  2. Bourguignon J., Neuburger M., Douce R. Resolution and characterization of the glycine-cleavage reaction in pea leaf mitochondria. Properties of the forward reaction catalysed by glycine decarboxylase and serine hydroxymethyltransferase. Biochem J. 1988 Oct 1;255(1):169–178. doi: 10.1042/bj2550169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bourmeyster N., Stasia M. J., Garin J., Gagnon J., Boquet P., Vignais P. V. Copurification of rho protein and the rho-GDP dissociation inhibitor from bovine neutrophil cytosol. Effect of phosphoinositides on rho ADP-ribosylation by the C3 exoenzyme of Clostridium botulinum. Biochemistry. 1992 Dec 29;31(51):12863–12869. doi: 10.1021/bi00166a022. [DOI] [PubMed] [Google Scholar]
  4. Clarke A. K., Critchley C. The identification of a heat-shock protein complex in chloroplasts of barley leaves. Plant Physiol. 1992 Dec;100(4):2081–2089. doi: 10.1104/pp.100.4.2081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dallas W. S., Gowen J. E., Ray P. H., Cox M. J., Dev I. K. Cloning, sequencing, and enhanced expression of the dihydropteroate synthase gene of Escherichia coli MC4100. J Bacteriol. 1992 Sep;174(18):5961–5970. doi: 10.1128/jb.174.18.5961-5970.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Freemantle S. J., Taylor S. M., Krystal G., Moran R. G. Upstream organization of and multiple transcripts from the human folylpoly-gamma-glutamate synthetase gene. J Biol Chem. 1995 Apr 21;270(16):9579–9584. doi: 10.1074/jbc.270.16.9579. [DOI] [PubMed] [Google Scholar]
  7. Gavel Y., von Heijne G. Cleavage-site motifs in mitochondrial targeting peptides. Protein Eng. 1990 Oct;4(1):33–37. doi: 10.1093/protein/4.1.33. [DOI] [PubMed] [Google Scholar]
  8. Herrmann K. M. The Shikimate Pathway: Early Steps in the Biosynthesis of Aromatic Compounds. Plant Cell. 1995 Jul;7(7):907–919. doi: 10.1105/tpc.7.7.907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hong Y. L., Hossler P. A., Calhoun D. H., Meshnick S. R. Inhibition of recombinant Pneumocystis carinii dihydropteroate synthetase by sulfa drugs. Antimicrob Agents Chemother. 1995 Aug;39(8):1756–1763. doi: 10.1128/aac.39.8.1756. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kellam P., Dallas W. S., Ballantine S. P., Delves C. J. Functional cloning of the dihydropteroate synthase gene of Staphylococcus haemolyticus. FEMS Microbiol Lett. 1995 Dec 15;134(2-3):165–169. doi: 10.1111/j.1574-6968.1995.tb07932.x. [DOI] [PubMed] [Google Scholar]
  11. Lacks S. A., Greenberg B., Lopez P. A cluster of four genes encoding enzymes for five steps in the folate biosynthetic pathway of Streptococcus pneumoniae. J Bacteriol. 1995 Jan;177(1):66–74. doi: 10.1128/jb.177.1.66-74.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  13. Lopez P., Espinosa M., Greenberg B., Lacks S. A. Sulfonamide resistance in Streptococcus pneumoniae: DNA sequence of the gene encoding dihydropteroate synthase and characterization of the enzyme. J Bacteriol. 1987 Sep;169(9):4320–4326. doi: 10.1128/jb.169.9.4320-4326.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lopez P., Greenberg B., Lacks S. A. DNA sequence of folate biosynthesis gene sulD, encoding hydroxymethyldihydropterin pyrophosphokinase in Streptococcus pneumoniae, and characterization of the enzyme. J Bacteriol. 1990 Sep;172(9):4766–4774. doi: 10.1128/jb.172.9.4766-4774.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lopez P., Lacks S. A. A bifunctional protein in the folate biosynthetic pathway of Streptococcus pneumoniae with dihydroneopterin aldolase and hydroxymethyldihydropterin pyrophosphokinase activities. J Bacteriol. 1993 Apr;175(8):2214–2220. doi: 10.1128/jb.175.8.2214-2220.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Macherel D., Lebrun M., Gagnon J., Neuburger M., Douce R. cDNA cloning, primary structure and gene expression for H-protein, a component of the glycine-cleavage system (glycine decarboxylase) of pea (Pisum sativum) leaf mitochondria. Biochem J. 1990 Jun 15;268(3):783–789. doi: 10.1042/bj2680783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mourioux G., Douce R. Slow Passive Diffusion of Orthophosphate between Intact Isolated Chloroplasts and Suspending Medium. Plant Physiol. 1981 Mar;67(3):470–473. doi: 10.1104/pp.67.3.470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Okinaka O., Iwai K. The biosynthesis of folic acid compounds in plants. 3. Distribution of the dihydropteroate-synthesizing enzyme in plants. J Vitaminol (Kyoto) 1970 Sep;16(3):196–200. doi: 10.5925/jnsv1954.16.196. [DOI] [PubMed] [Google Scholar]
  19. Okinaka O., Iwai K. The biosynthesis of folic acid compounds in plants. IV. Purification and properties of the dihydropteroate-synthesizing enzyme from pea seedlings. J Vitaminol (Kyoto) 1970 Sep;16(3):201–209. doi: 10.5925/jnsv1954.16.201. [DOI] [PubMed] [Google Scholar]
  20. Roland S., Ferone R., Harvey R. J., Styles V. L., Morrison R. W. The characteristics and significance of sulfonamides as substrates for Escherichia coli dihydropteroate synthase. J Biol Chem. 1979 Oct 25;254(20):10337–10345. [PubMed] [Google Scholar]
  21. Rosenfeld J., Capdevielle J., Guillemot J. C., Ferrara P. In-gel digestion of proteins for internal sequence analysis after one- or two-dimensional gel electrophoresis. Anal Biochem. 1992 May 15;203(1):173–179. doi: 10.1016/0003-2697(92)90061-b. [DOI] [PubMed] [Google Scholar]
  22. Scrimgeour K. G. Methods for reduction, stabilization, and analyses of folates. Methods Enzymol. 1980;66:517–523. doi: 10.1016/0076-6879(80)66496-9. [DOI] [PubMed] [Google Scholar]
  23. Slock J., Stahly D. P., Han C. Y., Six E. W., Crawford I. P. An apparent Bacillus subtilis folic acid biosynthetic operon containing pab, an amphibolic trpG gene, a third gene required for synthesis of para-aminobenzoic acid, and the dihydropteroate synthase gene. J Bacteriol. 1990 Dec;172(12):7211–7226. doi: 10.1128/jb.172.12.7211-7226.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Talarico T. L., Ray P. H., Dev I. K., Merrill B. M., Dallas W. S. Cloning, sequence analysis, and overexpression of Escherichia coli folK, the gene coding for 7,8-dihydro-6-hydroxymethylpterin-pyrophosphokinase. J Bacteriol. 1992 Sep;174(18):5971–5977. doi: 10.1128/jb.174.18.5971-5977.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Triglia T., Cowman A. F. Primary structure and expression of the dihydropteroate synthetase gene of Plasmodium falciparum. Proc Natl Acad Sci U S A. 1994 Jul 19;91(15):7149–7153. doi: 10.1073/pnas.91.15.7149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Volpe F., Ballantine S. P., Delves C. J. The multifunctional folic acid synthesis fas gene of Pneumocystis carinii encodes dihydroneopterin aldolase, hydroxymethyldihydropterin pyrophosphokinase and dihydropteroate synthase. Eur J Biochem. 1993 Sep 1;216(2):449–458. doi: 10.1111/j.1432-1033.1993.tb18163.x. [DOI] [PubMed] [Google Scholar]
  27. Volpe F., Dyer M., Scaife J. G., Darby G., Stammers D. K., Delves C. J. The multifunctional folic acid synthesis fas gene of Pneumocystis carinii appears to encode dihydropteroate synthase and hydroxymethyldihydropterin pyrophosphokinase. Gene. 1992 Mar 15;112(2):213–218. doi: 10.1016/0378-1119(92)90378-3. [DOI] [PubMed] [Google Scholar]
  28. Walter R. D., Königk E. Biosynthesis of folic acid compounds in plasmodia. Purification and properties of the 7,8-dihydropteroate-synthesizing enzyme from Plasmodium chabaudi. Hoppe Seylers Z Physiol Chem. 1974 Apr;355(4):431–437. doi: 10.1515/bchm2.1974.355.1.431. [DOI] [PubMed] [Google Scholar]
  29. Weighardt F., Biamonti G., Riva S. A simple procedure for enhancing PCR specificity. PCR Methods Appl. 1993 Aug;3(1):77–80. doi: 10.1101/gr.3.1.77. [DOI] [PubMed] [Google Scholar]
  30. Zhang Y., Meshnick S. R. Inhibition of Plasmodium falciparum dihydropteroate synthetase and growth in vitro by sulfa drugs. Antimicrob Agents Chemother. 1991 Feb;35(2):267–271. doi: 10.1128/aac.35.2.267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. von Heijne G. Mitochondrial targeting sequences may form amphiphilic helices. EMBO J. 1986 Jun;5(6):1335–1342. doi: 10.1002/j.1460-2075.1986.tb04364.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES