Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1997 Mar 17;16(6):1137–1144. doi: 10.1093/emboj/16.6.1137

Transgenic tobacco expressing a foreign calmodulin gene shows an enhanced production of active oxygen species.

S A Harding 1, S H Oh 1, D M Roberts 1
PMCID: PMC1169712  PMID: 9135130

Abstract

A strategy for elucidating specific molecular targets of calcium and calmodulin in plant defense responses has been developed. We have used a dominant-acting calmodulin mutant (VU-3, Lys to Arg115) to investigate the oxidative burst and nicotinamide co-enzyme fluxes after various stimuli (cellulase, harpin, incompatible bacteria, osmotic and mechanical) that elicit plant defense responses in transgenic tobacco cell cultures. VU-3 calmodulin differs from endogenous plant calmodulin in that it cannot be methylated post-translationally, and as a result it hyperactivates calmodulin-dependent NAD kinase. Cells expressing VU-3 calmodulin exhibited a stronger active oxygen burst that occurred more rapidly than in normal control cells challenged with the same stimuli. Increases in NADPH level were also greater in VU-3 cells and coincided both in timing and magnitude with development of the active oxygen species (AOS) burst. These data show that calmodulin is a target of calcium fluxes in response to elicitor or environmental stress, and provide the first evidence that plant NAD kinase may be a downstream target which potentiates AOS production by altering NAD(H)/NADP(H) homeostasis.

Full Text

The Full Text of this article is available as a PDF (347.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson J. M., Cormier M. J. Calcium-dependent regulation of NAD kinase. Biochem Biophys Res Commun. 1978 Oct 16;84(3):595–602. doi: 10.1016/0006-291x(78)90747-7. [DOI] [PubMed] [Google Scholar]
  2. Apostol I., Heinstein P. F., Low P. S. Rapid Stimulation of an Oxidative Burst during Elicitation of Cultured Plant Cells : Role in Defense and Signal Transduction. Plant Physiol. 1989 May;90(1):109–116. doi: 10.1104/pp.90.1.109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Auh C. K., Murphy T. M. Plasma Membrane Redox Enzyme Is Involved in the Synthesis of O2- and H2O2 by Phytophthora Elicitor-Stimulated Rose Cells. Plant Physiol. 1995 Apr;107(4):1241–1247. doi: 10.1104/pp.107.4.1241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bach M., Schnitzler J. P., Seitz H. U. Elicitor-Induced Changes in Ca2+ Influx, K+ Efflux, and 4-Hydroxybenzoic Acid Synthesis in Protoplasts of Daucus carota L. Plant Physiol. 1993 Oct;103(2):407–412. doi: 10.1104/pp.103.2.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Baum G., Lev-Yadun S., Fridmann Y., Arazi T., Katsnelson H., Zik M., Fromm H. Calmodulin binding to glutamate decarboxylase is required for regulation of glutamate and GABA metabolism and normal development in plants. EMBO J. 1996 Jun 17;15(12):2988–2996. [PMC free article] [PubMed] [Google Scholar]
  6. Braam J., Davis R. W. Rain-, wind-, and touch-induced expression of calmodulin and calmodulin-related genes in Arabidopsis. Cell. 1990 Feb 9;60(3):357–364. doi: 10.1016/0092-8674(90)90587-5. [DOI] [PubMed] [Google Scholar]
  7. Braam J. Regulated expression of the calmodulin-related TCH genes in cultured Arabidopsis cells: induction by calcium and heat shock. Proc Natl Acad Sci U S A. 1992 Apr 15;89(8):3213–3216. doi: 10.1073/pnas.89.8.3213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  9. Bradley D. J., Kjellbom P., Lamb C. J. Elicitor- and wound-induced oxidative cross-linking of a proline-rich plant cell wall protein: a novel, rapid defense response. Cell. 1992 Jul 10;70(1):21–30. doi: 10.1016/0092-8674(92)90530-p. [DOI] [PubMed] [Google Scholar]
  10. Brisson L. F., Tenhaken R., Lamb C. Function of Oxidative Cross-Linking of Cell Wall Structural Proteins in Plant Disease Resistance. Plant Cell. 1994 Dec;6(12):1703–1712. doi: 10.1105/tpc.6.12.1703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Bush D. S. Regulation of Cytosolic Calcium in Plants. Plant Physiol. 1993 Sep;103(1):7–13. doi: 10.1104/pp.103.1.7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Chen Z., Silva H., Klessig D. F. Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science. 1993 Dec 17;262(5141):1883–1886. doi: 10.1126/science.8266079. [DOI] [PubMed] [Google Scholar]
  13. Cross A. R., Jones O. T. Enzymic mechanisms of superoxide production. Biochim Biophys Acta. 1991 May 6;1057(3):281–298. doi: 10.1016/s0005-2728(05)80140-9. [DOI] [PubMed] [Google Scholar]
  14. Cross A. R., Jones O. T. The effect of the inhibitor diphenylene iodonium on the superoxide-generating system of neutrophils. Specific labelling of a component polypeptide of the oxidase. Biochem J. 1986 Jul 1;237(1):111–116. doi: 10.1042/bj2370111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Dwyer S. C., Legendre L., Low P. S., Leto T. L. Plant and human neutrophil oxidative burst complexes contain immunologically related proteins. Biochim Biophys Acta. 1996 Mar 15;1289(2):231–237. doi: 10.1016/0304-4165(95)00156-5. [DOI] [PubMed] [Google Scholar]
  16. Epel D., Patton C., Wallace R. W., Cheung W. Y. Calmodulin activates NAD kinase of sea urchin eggs: an early event of fertilization. Cell. 1981 Feb;23(2):543–549. doi: 10.1016/0092-8674(81)90150-1. [DOI] [PubMed] [Google Scholar]
  17. Galaud J. P., Lareyre J. J., Boyer N. Isolation, sequencing and analysis of the expression of Bryonia calmodulin after mechanical perturbation. Plant Mol Biol. 1993 Nov;23(4):839–846. doi: 10.1007/BF00021538. [DOI] [PubMed] [Google Scholar]
  18. He S. Y., Huang H. C., Collmer A. Pseudomonas syringae pv. syringae harpinPss: a protein that is secreted via the Hrp pathway and elicits the hypersensitive response in plants. Cell. 1993 Jul 2;73(7):1255–1266. doi: 10.1016/0092-8674(93)90354-s. [DOI] [PubMed] [Google Scholar]
  19. Heinecke J. W., Shapiro B. M. The respiratory burst oxidase of fertilization. A physiological target for regulation by protein kinase C. J Biol Chem. 1992 Apr 25;267(12):7959–7962. [PubMed] [Google Scholar]
  20. Henderson L. M., Chappel J. B. NADPH oxidase of neutrophils. Biochim Biophys Acta. 1996 Feb 15;1273(2):87–107. doi: 10.1016/0005-2728(95)00140-9. [DOI] [PubMed] [Google Scholar]
  21. Hulen D., Baron A., Salisbury J., Clarke M. Production and specificity of monoclonal antibodies against calmodulin from Dictyostelium discoideum. Cell Motil Cytoskeleton. 1991;18(2):113–122. doi: 10.1002/cm.970180206. [DOI] [PubMed] [Google Scholar]
  22. KING E. O., WARD M. K., RANEY D. E. Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med. 1954 Aug;44(2):301–307. [PubMed] [Google Scholar]
  23. Knight M. R., Campbell A. K., Smith S. M., Trewavas A. J. Transgenic plant aequorin reports the effects of touch and cold-shock and elicitors on cytoplasmic calcium. Nature. 1991 Aug 8;352(6335):524–526. doi: 10.1038/352524a0. [DOI] [PubMed] [Google Scholar]
  24. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  25. Lamb C. J. Plant disease resistance genes in signal perception and transduction. Cell. 1994 Feb 11;76(3):419–422. doi: 10.1016/0092-8674(94)90106-6. [DOI] [PubMed] [Google Scholar]
  26. Legendre L., Yueh Y. G., Crain R., Haddock N., Heinstein P. F., Low P. S. Phospholipase C activation during elicitation of the oxidative burst in cultured plant cells. J Biol Chem. 1993 Nov 25;268(33):24559–24563. [PubMed] [Google Scholar]
  27. Ling V., Snedden W. A., Shelp B. J., Assmann S. M. Analysis of a soluble calmodulin binding protein from fava bean roots: identification of glutamate decarboxylase as a calmodulin-activated enzyme. Plant Cell. 1994 Aug;6(8):1135–1143. doi: 10.1105/tpc.6.8.1135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Murphy T. M., Auh C. K. The Superoxide Synthases of Plasma Membrane Preparations from Cultured Rose Cells. Plant Physiol. 1996 Feb;110(2):621–629. doi: 10.1104/pp.110.2.621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Muto S., Miyachi S. Properties of a Protein Activator of NAD Kinase from Plants. Plant Physiol. 1977 Jan;59(1):55–60. doi: 10.1104/pp.59.1.55. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Nürnberger T., Nennstiel D., Jabs T., Sacks W. R., Hahlbrock K., Scheel D. High affinity binding of a fungal oligopeptide elicitor to parsley plasma membranes triggers multiple defense responses. Cell. 1994 Aug 12;78(3):449–460. doi: 10.1016/0092-8674(94)90423-5. [DOI] [PubMed] [Google Scholar]
  31. Oh S. H., Roberts D. M. Analysis of the state of posttranslational calmodulin methylation in developing pea plants. Plant Physiol. 1990 Jul;93(3):880–887. doi: 10.1104/pp.93.3.880. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Oh S. H., Steiner H. Y., Dougall D. K., Roberts D. M. Modulation of calmodulin levels, calmodulin methylation, and calmodulin binding proteins during carrot cell growth and embryogenesis. Arch Biochem Biophys. 1992 Aug 15;297(1):28–34. doi: 10.1016/0003-9861(92)90636-b. [DOI] [PubMed] [Google Scholar]
  33. Price A. H., Taylor A., Ripley S. J., Griffiths A., Trewavas A. J., Knight M. R. Oxidative Signals in Tobacco Increase Cytosolic Calcium. Plant Cell. 1994 Sep;6(9):1301–1310. doi: 10.1105/tpc.6.9.1301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Roberts D. M., Besl L., Oh S. H., Masterson R. V., Schell J., Stacey G. Expression of a calmodulin methylation mutant affects the growth and development of transgenic tobacco plants. Proc Natl Acad Sci U S A. 1992 Sep 1;89(17):8394–8398. doi: 10.1073/pnas.89.17.8394. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Roberts D. M., Crea R., Malecha M., Alvarado-Urbina G., Chiarello R. H., Watterson D. M. Chemical synthesis and expression of a calmodulin gene designed for site-specific mutagenesis. Biochemistry. 1985 Sep 10;24(19):5090–5098. doi: 10.1021/bi00340a020. [DOI] [PubMed] [Google Scholar]
  36. Roberts D. M., Rowe P. M., Siegel F. L., Lukas T. J., Watterson D. M. Trimethyllysine and protein function. Effect of methylation and mutagenesis of lysine 115 of calmodulin on NAD kinase activation. J Biol Chem. 1986 Feb 5;261(4):1491–1494. [PubMed] [Google Scholar]
  37. Sistrunk M. L., Antosiewicz D. M., Purugganan M. M., Braam J. Arabidopsis TCH3 encodes a novel Ca2+ binding protein and shows environmentally induced and tissue-specific regulation. Plant Cell. 1994 Nov;6(11):1553–1565. doi: 10.1105/tpc.6.11.1553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Stäb M. R., Ebel J. Effects of Ca2+ on phytoalexin induction by fungal elicitor in soybean cells. Arch Biochem Biophys. 1987 Sep;257(2):416–423. doi: 10.1016/0003-9861(87)90585-6. [DOI] [PubMed] [Google Scholar]
  39. Yahraus T., Chandra S., Legendre L., Low P. S. Evidence for a Mechanically Induced Oxidative Burst. Plant Physiol. 1995 Dec;109(4):1259–1266. doi: 10.1104/pp.109.4.1259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Zhang Y., Roberts D. M. Expression of soybean nodulin 26 in transgenic tobacco. Targeting to the vacuolar membrane and effects on floral and seed development. Mol Biol Cell. 1995 Jan;6(1):109–117. doi: 10.1091/mbc.6.1.109. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES