Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1997 Mar 17;16(6):1464–1472. doi: 10.1093/emboj/16.6.1464

The RuvC protein dimer resolves Holliday junctions by a dual incision mechanism that involves base-specific contacts.

R Shah 1, R Cosstick 1, S C West 1
PMCID: PMC1169743  PMID: 9135161

Abstract

The Escherichia coli RuvC protein resolves DNA intermediates produced during genetic recombination. In vitro, RuvC binds specifically to Holliday junctions and resolves them by the introduction of nicks into two strands of like polarity. In contrast to junction recognition, which occurs without regard for DNA sequence, resolution occurs preferentially at sequences that exhibit the consensus 5'-(A/T)TT/(G/C)-3' (where / indicates the site of incision). Synthetic Holliday junctions containing modified cleavage sequences have been used to investigate the mechanism of cleavage. The results indicate that specific DNA sequences are required for the correct docking of DNA into the two active sites of the RuvC dimer. In addition, using chemically modified oligonucleotides to introduce a hydrolysis-resistant 3'-S-phosphorothiolate linkage at the cleavage site, it was found that, as long as the sequence requirements are fulfilled, the two incisions could be uncoupled from each other. These results indicate that RuvC protein resolves Holliday junctions by a mechanism similar to that exhibited by certain restriction enzymes.

Full Text

The Full Text of this article is available as a PDF (460.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ariyoshi M., Vassylyev D. G., Iwasaki H., Nakamura H., Shinagawa H., Morikawa K. Atomic structure of the RuvC resolvase: a holliday junction-specific endonuclease from E. coli. Cell. 1994 Sep 23;78(6):1063–1072. doi: 10.1016/0092-8674(94)90280-1. [DOI] [PubMed] [Google Scholar]
  2. Bennett R. J., Dunderdale H. J., West S. C. Resolution of Holliday junctions by RuvC resolvase: cleavage specificity and DNA distortion. Cell. 1993 Sep 24;74(6):1021–1031. doi: 10.1016/0092-8674(93)90724-5. [DOI] [PubMed] [Google Scholar]
  3. Bennett R. J., West S. C. Resolution of Holliday junctions in genetic recombination: RuvC protein nicks DNA at the point of strand exchange. Proc Natl Acad Sci U S A. 1996 Oct 29;93(22):12217–12222. doi: 10.1073/pnas.93.22.12217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bennett R. J., West S. C. RuvC protein resolves Holliday junctions via cleavage of the continuous (noncrossover) strands. Proc Natl Acad Sci U S A. 1995 Jun 6;92(12):5635–5639. doi: 10.1073/pnas.92.12.5635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bennett R. J., West S. C. Structural analysis of the RuvC-Holliday junction complex reveals an unfolded junction. J Mol Biol. 1995 Sep 15;252(2):213–226. doi: 10.1006/jmbi.1995.0489. [DOI] [PubMed] [Google Scholar]
  6. Benson F. E., Illing G. T., Sharples G. J., Lloyd R. G. Nucleotide sequencing of the ruv region of Escherichia coli K-12 reveals a LexA regulated operon encoding two genes. Nucleic Acids Res. 1988 Feb 25;16(4):1541–1549. doi: 10.1093/nar/16.4.1541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Benson F. E., West S. C. Substrate specificity of the Escherichia coli RuvC protein. Resolution of three- and four-stranded recombination intermediates. J Biol Chem. 1994 Feb 18;269(7):5195–5201. [PubMed] [Google Scholar]
  8. Bertrand-Burggraf E., Kemper B., Fuchs R. P. Endonuclease VII of phage T4 nicks N-2-acetylaminofluorene-induced DNA structures in vitro. Mutat Res. 1994 May;314(3):287–295. doi: 10.1016/0921-8777(94)90072-8. [DOI] [PubMed] [Google Scholar]
  9. Duckett D. R., Murchie A. I., Diekmann S., von Kitzing E., Kemper B., Lilley D. M. The structure of the Holliday junction, and its resolution. Cell. 1988 Oct 7;55(1):79–89. doi: 10.1016/0092-8674(88)90011-6. [DOI] [PubMed] [Google Scholar]
  10. Dunderdale H. J., Benson F. E., Parsons C. A., Sharples G. J., Lloyd R. G., West S. C. Formation and resolution of recombination intermediates by E. coli RecA and RuvC proteins. Nature. 1991 Dec 19;354(6354):506–510. doi: 10.1038/354506a0. [DOI] [PubMed] [Google Scholar]
  11. Dunderdale H. J., Sharples G. J., Lloyd R. G., West S. C. Cloning, overexpression, purification, and characterization of the Escherichia coli RuvC Holliday junction resolvase. J Biol Chem. 1994 Feb 18;269(7):5187–5194. [PubMed] [Google Scholar]
  12. Elborough K. M., West S. C. Resolution of synthetic Holliday junctions in DNA by an endonuclease activity from calf thymus. EMBO J. 1990 Sep;9(9):2931–2936. doi: 10.1002/j.1460-2075.1990.tb07484.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hyde H., Davies A. A., Benson F. E., West S. C. Resolution of recombination intermediates by a mammalian activity functionally analogous to Escherichia coli RuvC resolvase. J Biol Chem. 1994 Feb 18;269(7):5202–5209. [PubMed] [Google Scholar]
  14. Iwasaki H., Takahagi M., Shiba T., Nakata A., Shinagawa H. Escherichia coli RuvC protein is an endonuclease that resolves the Holliday structure. EMBO J. 1991 Dec;10(13):4381–4389. doi: 10.1002/j.1460-2075.1991.tb05016.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kleff S., Kemper B. Initiation of heteroduplex-loop repair by T4-encoded endonuclease VII in vitro. EMBO J. 1988 May;7(5):1527–1535. doi: 10.1002/j.1460-2075.1988.tb02972.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kleff S., Kemper B., Sternglanz R. Identification and characterization of yeast mutants and the gene for a cruciform cutting endonuclease. EMBO J. 1992 Feb;11(2):699–704. doi: 10.1002/j.1460-2075.1992.tb05102.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kupfer C., Kemper B. Reactions of mitochondrial cruciform cutting endonuclease 1 (CCE1) of yeast Saccharomyces cerevisiae with branched DNAs in vitro. Eur J Biochem. 1996 May 15;238(1):77–87. doi: 10.1111/j.1432-1033.1996.0077q.x. [DOI] [PubMed] [Google Scholar]
  18. Lockshon D., Zweifel S. G., Freeman-Cook L. L., Lorimer H. E., Brewer B. J., Fangman W. L. A role for recombination junctions in the segregation of mitochondrial DNA in yeast. Cell. 1995 Jun 16;81(6):947–955. doi: 10.1016/0092-8674(95)90014-4. [DOI] [PubMed] [Google Scholar]
  19. Mahdi A. A., Sharples G. J., Mandal T. N., Lloyd R. G. Holliday junction resolvases encoded by homologous rusA genes in Escherichia coli K-12 and phage 82. J Mol Biol. 1996 Apr 5;257(3):561–573. doi: 10.1006/jmbi.1996.0185. [DOI] [PubMed] [Google Scholar]
  20. Mizuuchi K., Kemper B., Hays J., Weisberg R. A. T4 endonuclease VII cleaves holliday structures. Cell. 1982 Jun;29(2):357–365. doi: 10.1016/0092-8674(82)90152-0. [DOI] [PubMed] [Google Scholar]
  21. Murchie A. I., Lilley D. M. T4 endonuclease VII cleaves DNA containing a cisplatin adduct. J Mol Biol. 1993 Sep 5;233(1):77–85. doi: 10.1006/jmbi.1993.1486. [DOI] [PubMed] [Google Scholar]
  22. Parsons C. A., Kemper B., West S. C. Interaction of a four-way junction in DNA with T4 endonuclease VII. J Biol Chem. 1990 Jun 5;265(16):9285–9289. [PubMed] [Google Scholar]
  23. Parsons C. A., Tsaneva I., Lloyd R. G., West S. C. Interaction of Escherichia coli RuvA and RuvB proteins with synthetic Holliday junctions. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5452–5456. doi: 10.1073/pnas.89.12.5452. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Picksley S. M., Parsons C. A., Kemper B., West S. C. Cleavage specificity of bacteriophage T4 endonuclease VII and bacteriophage T7 endonuclease I on synthetic branch migratable Holliday junctions. J Mol Biol. 1990 Apr 20;212(4):723–735. doi: 10.1016/0022-2836(90)90233-C. [DOI] [PubMed] [Google Scholar]
  25. Pottmeyer S., Kemper B. T4 endonuclease VII resolves cruciform DNA with nick and counter-nick and its activity is directed by local nucleotide sequence. J Mol Biol. 1992 Feb 5;223(3):607–615. doi: 10.1016/0022-2836(92)90977-r. [DOI] [PubMed] [Google Scholar]
  26. Pöhler J. R., Giraud-Panis M. J., Lilley D. M. T4 endonuclease VII selects and alters the structure of the four-way DNA junction; binding of a resolution-defective mutant enzyme. J Mol Biol. 1996 Aug 2;260(5):678–696. doi: 10.1006/jmbi.1996.0430. [DOI] [PubMed] [Google Scholar]
  27. Saito A., Iwasaki H., Ariyoshi M., Morikawa K., Shinagawa H. Identification of four acidic amino acids that constitute the catalytic center of the RuvC Holliday junction resolvase. Proc Natl Acad Sci U S A. 1995 Aug 1;92(16):7470–7474. doi: 10.1073/pnas.92.16.7470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Shah R., Bennett R. J., West S. C. Activation of RuvC Holliday junction resolvase in vitro. Nucleic Acids Res. 1994 Jul 11;22(13):2490–2497. doi: 10.1093/nar/22.13.2490. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Shah R., Bennett R. J., West S. C. Genetic recombination in E. coli: RuvC protein cleaves Holliday junctions at resolution hotspots in vitro. Cell. 1994 Dec 2;79(5):853–864. doi: 10.1016/0092-8674(94)90074-4. [DOI] [PubMed] [Google Scholar]
  30. Sharples G. J., Chan S. N., Mahdi A. A., Whitby M. C., Lloyd R. G. Processing of intermediates in recombination and DNA repair: identification of a new endonuclease that specifically cleaves Holliday junctions. EMBO J. 1994 Dec 15;13(24):6133–6142. doi: 10.1002/j.1460-2075.1994.tb06960.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Shida T., Iwasaki H., Saito A., Kyogoku Y., Shinagawa H. Analysis of substrate specificity of the RuvC holliday junction resolvase with synthetic Holliday junctions. J Biol Chem. 1996 Oct 18;271(42):26105–26109. doi: 10.1074/jbc.271.42.26105. [DOI] [PubMed] [Google Scholar]
  32. Shinagawa H., Iwasaki H. Processing the holliday junction in homologous recombination. Trends Biochem Sci. 1996 Mar;21(3):107–111. [PubMed] [Google Scholar]
  33. Solaro P. C., Birkenkamp K., Pfeiffer P., Kemper B. Endonuclease VII of phage T4 triggers mismatch correction in vitro. J Mol Biol. 1993 Apr 5;230(3):868–877. doi: 10.1006/jmbi.1993.1207. [DOI] [PubMed] [Google Scholar]
  34. Takahagi M., Iwasaki H., Shinagawa H. Structural requirements of substrate DNA for binding to and cleavage by RuvC, a Holliday junction resolvase. J Biol Chem. 1994 May 27;269(21):15132–15139. [PubMed] [Google Scholar]
  35. Taylor J. D., Halford S. E. Discrimination between DNA sequences by the EcoRV restriction endonuclease. Biochemistry. 1989 Jul 25;28(15):6198–6207. doi: 10.1021/bi00441a011. [DOI] [PubMed] [Google Scholar]
  36. Vipond I. B., Halford S. E. Specific DNA recognition by EcoRV restriction endonuclease induced by calcium ions. Biochemistry. 1995 Jan 31;34(4):1113–1119. doi: 10.1021/bi00004a002. [DOI] [PubMed] [Google Scholar]
  37. Vyle J. S., Connolly B. A., Kemp D., Cosstick R. Sequence- and strand-specific cleavage in oligodeoxyribonucleotides and DNA containing 3'-thiothymidine. Biochemistry. 1992 Mar 24;31(11):3012–3018. doi: 10.1021/bi00126a024. [DOI] [PubMed] [Google Scholar]
  38. West S. C. The RuvABC proteins and Holliday junction processing in Escherichia coli. J Bacteriol. 1996 Mar;178(5):1237–1241. doi: 10.1128/jb.178.5.1237-1241.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. White M. F., Lilley D. M. The structure-selectivity and sequence-preference of the junction-resolving enzyme CCE1 of Saccharomyces cerevisiae. J Mol Biol. 1996 Mar 29;257(2):330–341. doi: 10.1006/jmbi.1996.0166. [DOI] [PubMed] [Google Scholar]
  40. Winkler F. K., Banner D. W., Oefner C., Tsernoglou D., Brown R. S., Heathman S. P., Bryan R. K., Martin P. D., Petratos K., Wilson K. S. The crystal structure of EcoRV endonuclease and of its complexes with cognate and non-cognate DNA fragments. EMBO J. 1993 May;12(5):1781–1795. doi: 10.2210/pdb4rve/pdb. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES