Abstract
The actin cytoskeleton plays an important, but poorly understood, role in the development of multicellular organisms. To help illuminate this role, we used actin filament affinity chromatography to isolate actin binding proteins from large quantities of Caenorhabditis elegans oocytes. To examine how these proteins might be involved in early development, we prepared antibodies against some of them and determined their distribution in fixed embryos. Three of these proteins co-localize with different subsets of the embryonic actin cytoskeleton. One co-localizes with actin to all cell cortices. The second oscillates between the nucleus and cortex in a cell-cycle-dependent manner. The third is asymmetrically enriched at the anterior cortex of one-cell embryos, showing a temporal and spatial localization suggestive of a function in generating developmental asymmetry. We conclude that biochemistry is a feasible and useful approach in the study of early C. elegans development, and that the embryonic actin cytoskeleton is regulated in a complex fashion in order to carry out multiple, simultaneous functions.
Full Text
The Full Text of this article is available as a PDF (436.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bachman E. S., McClay D. R. Characterization of moesin in the sea urchin Lytechinus variegatus: redistribution to the plasma membrane following fertilization is inhibited by cytochalasin B. J Cell Sci. 1995 Jan;108(Pt 1):161–171. doi: 10.1242/jcs.108.1.161. [DOI] [PubMed] [Google Scholar]
- Barstead R. J., Waterston R. H. The basal component of the nematode dense-body is vinculin. J Biol Chem. 1989 Jun 15;264(17):10177–10185. [PubMed] [Google Scholar]
- Cheng N. N., Kirby C. M., Kemphues K. J. Control of cleavage spindle orientation in Caenorhabditis elegans: the role of the genes par-2 and par-3. Genetics. 1995 Feb;139(2):549–559. doi: 10.1093/genetics/139.2.549. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cramer L., Mitchison T. J. Moving and stationary actin filaments are involved in spreading of postmitotic PtK2 cells. J Cell Biol. 1993 Aug;122(4):833–843. doi: 10.1083/jcb.122.4.833. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Drubin D. G., Miller K. G., Botstein D. Yeast actin-binding proteins: evidence for a role in morphogenesis. J Cell Biol. 1988 Dec;107(6 Pt 2):2551–2561. doi: 10.1083/jcb.107.6.2551. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Drubin D. G., Mulholland J., Zhu Z. M., Botstein D. Homology of a yeast actin-binding protein to signal transduction proteins and myosin-I. Nature. 1990 Jan 18;343(6255):288–290. doi: 10.1038/343288a0. [DOI] [PubMed] [Google Scholar]
- Drubin D. G., Nelson W. J. Origins of cell polarity. Cell. 1996 Feb 9;84(3):335–344. doi: 10.1016/s0092-8674(00)81278-7. [DOI] [PubMed] [Google Scholar]
- Etemad-Moghadam B., Guo S., Kemphues K. J. Asymmetrically distributed PAR-3 protein contributes to cell polarity and spindle alignment in early C. elegans embryos. Cell. 1995 Dec 1;83(5):743–752. doi: 10.1016/0092-8674(95)90187-6. [DOI] [PubMed] [Google Scholar]
- Field C. M., Alberts B. M. Anillin, a contractile ring protein that cycles from the nucleus to the cell cortex. J Cell Biol. 1995 Oct;131(1):165–178. doi: 10.1083/jcb.131.1.165. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gueth-Hallonet C., Maro B. Cell polarity and cell diversification during early mouse embryogenesis. Trends Genet. 1992 Aug;8(8):274–279. doi: 10.1016/0168-9525(92)90253-z. [DOI] [PubMed] [Google Scholar]
- Guo S., Kemphues K. J. A non-muscle myosin required for embryonic polarity in Caenorhabditis elegans. Nature. 1996 Aug 1;382(6590):455–458. doi: 10.1038/382455a0. [DOI] [PubMed] [Google Scholar]
- Hill D. P., Strome S. An analysis of the role of microfilaments in the establishment and maintenance of asymmetry in Caenorhabditis elegans zygotes. Dev Biol. 1988 Jan;125(1):75–84. doi: 10.1016/0012-1606(88)90060-7. [DOI] [PubMed] [Google Scholar]
- Hill D. P., Strome S. Brief cytochalasin-induced disruption of microfilaments during a critical interval in 1-cell C. elegans embryos alters the partitioning of developmental instructions to the 2-cell embryo. Development. 1990 Jan;108(1):159–172. doi: 10.1242/dev.108.1.159. [DOI] [PubMed] [Google Scholar]
- Hyman A. A., White J. G. Determination of cell division axes in the early embryogenesis of Caenorhabditis elegans. J Cell Biol. 1987 Nov;105(5):2123–2135. doi: 10.1083/jcb.105.5.2123. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jeffery W. R., Swalla B. J. The myoplasm of ascidian eggs: a localized cytoskeletal domain with multiple roles in embryonic development. Semin Cell Biol. 1990 Oct;1(5):373–381. [PubMed] [Google Scholar]
- Johnson M. H., Maro B. A dissection of the mechanisms generating and stabilizing polarity in mouse 8- and 16-cell blastomeres: the role of cytoskeletal elements. J Embryol Exp Morphol. 1985 Dec;90:311–334. [PubMed] [Google Scholar]
- Kirby C., Kusch M., Kemphues K. Mutations in the par genes of Caenorhabditis elegans affect cytoplasmic reorganization during the first cell cycle. Dev Biol. 1990 Nov;142(1):203–215. doi: 10.1016/0012-1606(90)90164-e. [DOI] [PubMed] [Google Scholar]
- Lichtsteiner S., Tjian R. Synergistic activation of transcription by UNC-86 and MEC-3 in Caenorhabditis elegans embryo extracts. EMBO J. 1995 Aug 15;14(16):3937–3945. doi: 10.1002/j.1460-2075.1995.tb00065.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mermall V., McNally J. G., Miller K. G. Transport of cytoplasmic particles catalysed by an unconventional myosin in living Drosophila embryos. Nature. 1994 Jun 16;369(6481):560–562. doi: 10.1038/369560a0. [DOI] [PubMed] [Google Scholar]
- Miller K. G., Alberts B. M. F-actin affinity chromatography: technique for isolating previously unidentified actin-binding proteins. Proc Natl Acad Sci U S A. 1989 Jul;86(13):4808–4812. doi: 10.1073/pnas.86.13.4808. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miller K. G., Field C. M., Alberts B. M. Actin-binding proteins from Drosophila embryos: a complex network of interacting proteins detected by F-actin affinity chromatography. J Cell Biol. 1989 Dec;109(6 Pt 1):2963–2975. doi: 10.1083/jcb.109.6.2963. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miller K. G., Field C. M., Alberts B. M., Kellogg D. R. Use of actin filament and microtubule affinity chromatography to identify proteins that bind to the cytoskeleton. Methods Enzymol. 1991;196:303–319. doi: 10.1016/0076-6879(91)96028-p. [DOI] [PubMed] [Google Scholar]
- Ou S. K., Hwang J. M., Patterson P. H. A modified method for obtaining large amounts of high titer polyclonal ascites fluid. J Immunol Methods. 1993 Sep 27;165(1):75–80. doi: 10.1016/0022-1759(93)90108-j. [DOI] [PubMed] [Google Scholar]
- Pardee J. D., Spudich J. A. Purification of muscle actin. Methods Enzymol. 1982;85(Pt B):164–181. doi: 10.1016/0076-6879(82)85020-9. [DOI] [PubMed] [Google Scholar]
- Rose L. S., Lamb M. L., Hird S. N., Kemphues K. J. Pseudocleavage is dispensable for polarity and development in C. elegans embryos. Dev Biol. 1995 Apr;168(2):479–489. doi: 10.1006/dbio.1995.1096. [DOI] [PubMed] [Google Scholar]
- Stroeher V. L., Kennedy B. P., Millen K. J., Schroeder D. F., Hawkins M. G., Goszczynski B., McGhee J. D. DNA-protein interactions in the Caenorhabditis elegans embryo: oocyte and embryonic factors that bind to the promoter of the gut-specific ges-1 gene. Dev Biol. 1994 Jun;163(2):367–380. doi: 10.1006/dbio.1994.1155. [DOI] [PubMed] [Google Scholar]
- Strome S. Fluorescence visualization of the distribution of microfilaments in gonads and early embryos of the nematode Caenorhabditis elegans. J Cell Biol. 1986 Dec;103(6 Pt 1):2241–2252. doi: 10.1083/jcb.103.6.2241. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sullivan W., Theurkauf W. E. The cytoskeleton and morphogenesis of the early Drosophila embryo. Curr Opin Cell Biol. 1995 Feb;7(1):18–22. doi: 10.1016/0955-0674(95)80040-9. [DOI] [PubMed] [Google Scholar]
- Waddle J. A., Cooper J. A., Waterston R. H. Transient localized accumulation of actin in Caenorhabditis elegans blastomeres with oriented asymmetric divisions. Development. 1994 Aug;120(8):2317–2328. doi: 10.1242/dev.120.8.2317. [DOI] [PubMed] [Google Scholar]
- Ward S., Miwa J. Characterization of temperature-sensitive, fertilization-defective mutants of the nematode caenorhabditis elegans. Genetics. 1978 Feb;88(2):285–303. doi: 10.1093/genetics/88.2.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wessel G. M., Chen S. W. Transient, localized accumulation of alpha-spectrin during sea urchin morphogenesis. Dev Biol. 1993 Jan;155(1):161–171. doi: 10.1006/dbio.1993.1015. [DOI] [PubMed] [Google Scholar]
- Yisraeli J. K., Sokol S., Melton D. A. A two-step model for the localization of maternal mRNA in Xenopus oocytes: involvement of microtubules and microfilaments in the translocation and anchoring of Vg1 mRNA. Development. 1990 Feb;108(2):289–298. doi: 10.1242/dev.108.2.289. [DOI] [PubMed] [Google Scholar]