Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1997 Apr 1;16(7):1593–1599. doi: 10.1093/emboj/16.7.1593

Voltage-dependent modulation of T-type calcium channels by protein tyrosine phosphorylation.

C Arnoult 1, J R Lemos 1, H M Florman 1
PMCID: PMC1169763  PMID: 9130704

Abstract

A T-type Ca2+ channel is expressed during differentiation of the male germ lineage in the mouse and is retained in sperm, where is it activated by contact with the the egg's extracellular matrix and controls sperm acrosomal exocytosis. Here, we examine the regulation of this Ca2+ channel in dissociated spermatogenic cells from the mouse using the whole-cell patch-clamp technique. T currents were enhanced, or facilitated, after strong depolarizations or high frequency stimulation. Voltage-dependent facilitation increased the Ca2+ current by an average of 50%. The same facilitation is produced by antagonists of protein tyrosine kinase activity. Conversely, antagonists of tyrosine phosphatase activity block voltage-dependent facilitation of the current. These data are consistent with the presence of a two-state model, in which T channels are maintained in a low (or zero) conductance state by tonic tyrosine phosphorylation and can be activated to a high conductance state by a tyrosine phosphatase activity. The positive and negative modulation of this channel by the tyrosine phosphorylation state provides a plausible mechanism for the control of sperm activity during the early stages of mammalian fertilization.

Full Text

The Full Text of this article is available as a PDF (253.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alvarez J. L., Rubio L. S., Vassort G. Facilitation of T-type calcium current in bullfrog atrial cells: voltage-dependent relief of a G protein inhibitory tone. J Physiol. 1996 Mar 1;491(Pt 2):321–334. doi: 10.1113/jphysiol.1996.sp021218. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arnoult C., Cardullo R. A., Lemos J. R., Florman H. M. Activation of mouse sperm T-type Ca2+ channels by adhesion to the egg zona pellucida. Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):13004–13009. doi: 10.1073/pnas.93.23.13004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Artalejo C. R., Adams M. E., Fox A. P. Three types of Ca2+ channel trigger secretion with different efficacies in chromaffin cells. Nature. 1994 Jan 6;367(6458):72–76. doi: 10.1038/367072a0. [DOI] [PubMed] [Google Scholar]
  4. Artalejo C. R., Dahmer M. K., Perlman R. L., Fox A. P. Two types of Ca2+ currents are found in bovine chromaffin cells: facilitation is due to the recruitment of one type. J Physiol. 1991 Jan;432:681–707. doi: 10.1113/jphysiol.1991.sp018406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Artalejo C. R., Rossie S., Perlman R. L., Fox A. P. Voltage-dependent phosphorylation may recruit Ca2+ current facilitation in chromaffin cells. Nature. 1992 Jul 2;358(6381):63–66. doi: 10.1038/358063a0. [DOI] [PubMed] [Google Scholar]
  6. Bean B. P. Neurotransmitter inhibition of neuronal calcium currents by changes in channel voltage dependence. Nature. 1989 Jul 13;340(6229):153–156. doi: 10.1038/340153a0. [DOI] [PubMed] [Google Scholar]
  7. Bourinet E., Charnet P., Tomlinson W. J., Stea A., Snutch T. P., Nargeot J. Voltage-dependent facilitation of a neuronal alpha 1C L-type calcium channel. EMBO J. 1994 Nov 1;13(21):5032–5039. doi: 10.1002/j.1460-2075.1994.tb06832.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Buisson B., Bottari S. P., de Gasparo M., Gallo-Payet N., Payet M. D. The angiotensin AT2 receptor modulates T-type calcium current in non-differentiated NG108-15 cells. FEBS Lett. 1992 Sep 7;309(2):161–164. doi: 10.1016/0014-5793(92)81086-2. [DOI] [PubMed] [Google Scholar]
  9. Buisson B., Laflamme L., Bottari S. P., de Gasparo M., Gallo-Payet N., Payet M. D. A G protein is involved in the angiotensin AT2 receptor inhibition of the T-type calcium current in non-differentiated NG108-15 cells. J Biol Chem. 1995 Jan 27;270(4):1670–1674. doi: 10.1074/jbc.270.4.1670. [DOI] [PubMed] [Google Scholar]
  10. Dolphin A. C. Facilitation of Ca2+ current in excitable cells. Trends Neurosci. 1996 Jan;19(1):35–43. doi: 10.1016/0166-2236(96)81865-0. [DOI] [PubMed] [Google Scholar]
  11. Doupnik C. A., Pun R. Y. G-protein activation mediates prepulse facilitation of Ca2+ channel currents in bovine chromaffin cells. J Membr Biol. 1994 May;140(1):47–56. doi: 10.1007/BF00234485. [DOI] [PubMed] [Google Scholar]
  12. Feldmeyer D., Melzer W., Pohl B., Zöllner P. Modulation of calcium current gating in frog skeletal muscle by conditioning depolarization. J Physiol. 1992 Nov;457:639–653. doi: 10.1113/jphysiol.1992.sp019399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fenwick E. M., Marty A., Neher E. A patch-clamp study of bovine chromaffin cells and of their sensitivity to acetylcholine. J Physiol. 1982 Oct;331:577–597. doi: 10.1113/jphysiol.1982.sp014393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Florman H. M., First N. L. The regulation of acrosomal exocytosis. I. Sperm capacitation is required for the induction of acrosome reactions by the bovine zona pellucida in vitro. Dev Biol. 1988 Aug;128(2):453–463. doi: 10.1016/0012-1606(88)90307-7. [DOI] [PubMed] [Google Scholar]
  15. Foresta C., Rossato M., Chiozzi P., Di Virgilio F. Mechanism of human sperm activation by extracellular ATP. Am J Physiol. 1996 Jun;270(6 Pt 1):C1709–C1714. doi: 10.1152/ajpcell.1996.270.6.C1709. [DOI] [PubMed] [Google Scholar]
  16. Foresta C., Rossato M., Di Virgilio F. Extracellular ATP is a trigger for the acrosome reaction in human spermatozoa. J Biol Chem. 1992 Sep 25;267(27):19443–19447. [PubMed] [Google Scholar]
  17. Foresta C., Rossato M., Di Virgilio F. Ion fluxes through the progesterone-activated channel of the sperm plasma membrane. Biochem J. 1993 Aug 15;294(Pt 1):279–283. doi: 10.1042/bj2940279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ganitkevich VYa, Isenberg G. Stimulation-induced potentiation of T-type Ca2+ channel currents in myocytes from guinea-pig coronary artery. J Physiol. 1991 Nov;443:703–725. doi: 10.1113/jphysiol.1991.sp018859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Golard A., Role L. W., Siegelbaum S. A. Protein kinase C blocks somatostatin-induced modulation of calcium current in chick sympathetic neurons. J Neurophysiol. 1993 Oct;70(4):1639–1643. doi: 10.1152/jn.1993.70.4.1639. [DOI] [PubMed] [Google Scholar]
  20. Grassi F., Lux H. D. Voltage-dependent GABA-induced modulation of calcium currents in chick sensory neurons. Neurosci Lett. 1989 Oct 23;105(1-2):113–119. doi: 10.1016/0304-3940(89)90021-9. [DOI] [PubMed] [Google Scholar]
  21. Hagiwara S., Kawa K. Calcium and potassium currents in spermatogenic cells dissociated from rat seminiferous tubules. J Physiol. 1984 Nov;356:135–149. doi: 10.1113/jphysiol.1984.sp015457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  23. Hille B. Modulation of ion-channel function by G-protein-coupled receptors. Trends Neurosci. 1994 Dec;17(12):531–536. doi: 10.1016/0166-2236(94)90157-0. [DOI] [PubMed] [Google Scholar]
  24. Jonas E. A., Kaczmarek L. K. Regulation of potassium channels by protein kinases. Curr Opin Neurobiol. 1996 Jun;6(3):318–323. doi: 10.1016/s0959-4388(96)80114-0. [DOI] [PubMed] [Google Scholar]
  25. Levitzki A., Gazit A. Tyrosine kinase inhibition: an approach to drug development. Science. 1995 Mar 24;267(5205):1782–1788. doi: 10.1126/science.7892601. [DOI] [PubMed] [Google Scholar]
  26. Liévano A., Santi C. M., Serrano C. J., Treviño C. L., Bellvé A. R., Hernández-Cruz A., Darszon A. T-type Ca2+ channels and alpha1E expression in spermatogenic cells, and their possible relevance to the sperm acrosome reaction. FEBS Lett. 1996 Jun 17;388(2-3):150–154. doi: 10.1016/0014-5793(96)00515-7. [DOI] [PubMed] [Google Scholar]
  27. Mintz I. M., Bean B. P. GABAB receptor inhibition of P-type Ca2+ channels in central neurons. Neuron. 1993 May;10(5):889–898. doi: 10.1016/0896-6273(93)90204-5. [DOI] [PubMed] [Google Scholar]
  28. Roche J. P., Anantharam V., Treistman S. N. Abolition of G protein inhibition of alpha 1A and alpha 1B calcium channels by co-expression of the beta 3 subunit. FEBS Lett. 1995 Aug 28;371(1):43–46. doi: 10.1016/0014-5793(95)00860-c. [DOI] [PubMed] [Google Scholar]
  29. Romrell L. J., Bellvé A. R., Fawcett D. W. Separation of mouse spermatogenic cells by sedimentation velocity. A morphological characterization. Dev Biol. 1976 Mar;49(1):119–131. doi: 10.1016/0012-1606(76)90262-1. [DOI] [PubMed] [Google Scholar]
  30. Sculptoreanu A., Rotman E., Takahashi M., Scheuer T., Catterall W. A. Voltage-dependent potentiation of the activity of cardiac L-type calcium channel alpha 1 subunits due to phosphorylation by cAMP-dependent protein kinase. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):10135–10139. doi: 10.1073/pnas.90.21.10135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Sculptoreanu A., Scheuer T., Catterall W. A. Voltage-dependent potentiation of L-type Ca2+ channels due to phosphorylation by cAMP-dependent protein kinase. Nature. 1993 Jul 15;364(6434):240–243. doi: 10.1038/364240a0. [DOI] [PubMed] [Google Scholar]
  32. Siegelbaum S. A. Channel regulation. Ion channel control by tyrosine phosphorylation. Curr Biol. 1994 Mar 1;4(3):242–245. doi: 10.1016/s0960-9822(00)00054-3. [DOI] [PubMed] [Google Scholar]
  33. Tsunoo A., Yoshii M., Narahashi T. Block of calcium channels by enkephalin and somatostatin in neuroblastoma-glioma hybrid NG108-15 cells. Proc Natl Acad Sci U S A. 1986 Dec;83(24):9832–9836. doi: 10.1073/pnas.83.24.9832. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Visconti P. E., Bailey J. L., Moore G. D., Pan D., Olds-Clarke P., Kopf G. S. Capacitation of mouse spermatozoa. I. Correlation between the capacitation state and protein tyrosine phosphorylation. Development. 1995 Apr;121(4):1129–1137. doi: 10.1242/dev.121.4.1129. [DOI] [PubMed] [Google Scholar]
  35. Visconti P. E., Moore G. D., Bailey J. L., Leclerc P., Connors S. A., Pan D., Olds-Clarke P., Kopf G. S. Capacitation of mouse spermatozoa. II. Protein tyrosine phosphorylation and capacitation are regulated by a cAMP-dependent pathway. Development. 1995 Apr;121(4):1139–1150. doi: 10.1242/dev.121.4.1139. [DOI] [PubMed] [Google Scholar]
  36. Ward C. R., Kopf G. S. Molecular events mediating sperm activation. Dev Biol. 1993 Jul;158(1):9–34. doi: 10.1006/dbio.1993.1165. [DOI] [PubMed] [Google Scholar]
  37. Ward C. R., Storey B. T. Determination of the time course of capacitation in mouse spermatozoa using a chlortetracycline fluorescence assay. Dev Biol. 1984 Aug;104(2):287–296. doi: 10.1016/0012-1606(84)90084-8. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES