Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1997 Apr 1;16(7):1610–1619. doi: 10.1093/emboj/16.7.1610

Lyn tyrosine kinase is essential for erythropoietin-induced differentiation of J2E erythroid cells.

P A Tilbrook 1, E Ingley 1, J H Williams 1, M L Hibbs 1, S P Klinken 1
PMCID: PMC1169765  PMID: 9130706

Abstract

Erythropoietin stimulates the immature erythroid J2E cell line to terminally differentiate and maintains the viability of the cells in the absence of serum. In contrast, a mutant J2E clone (J2E-NR) fails to mature in response to erythropoietin; however, it remains viable in the presence of the hormone. We have shown previously that intracellular signalling is disrupted in the J2E-NR cell line and that tyrosine phosphorylation is dramatically reduced after erythropoietin stimulation. In this study we investigated the defect in J2E-NR cells that is responsible for their inability to differentiate. Screening of numerous signalling molecules revealed that the lyn tyrosine kinase appeared to be absent from J2E-NR cells. On closer examination, both lyn mRNA and protein content were reduced >500-fold. Consistent with a defect in lyn, amphotropic retroviral infection of J2E-NR cells with lyn restored the ability of the cells to synthesize haemoglobin and enabled the cells to mature morphologically. Conversely, the ability of J2E cells to differentiate in response to epo was severely curtailed when antisense lyn oligonucleotides or a dominant negative lyn were introduced into the cells. However, erythropoietin-supported viability was unaffected by reducing lyn activity. The ability of two other erythropoietin-responsive cell lines (R11 and R24) to differentiate in response to the hormone was also reduced by dominant negative lyn. Finally, co-immunoprecipitation and yeast two-hybrid analyses indicated that lyn directly associated with the erythropoietin receptor complex. These data indicate for the first time an essential role for lyn in erythropoietin-initiated differentiation of J2E cells but not in the maintenance of cell viability.

Full Text

The Full Text of this article is available as a PDF (374.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrews N. C., Erdjument-Bromage H., Davidson M. B., Tempst P., Orkin S. H. Erythroid transcription factor NF-E2 is a haematopoietic-specific basic-leucine zipper protein. Nature. 1993 Apr 22;362(6422):722–728. doi: 10.1038/362722a0. [DOI] [PubMed] [Google Scholar]
  2. Appleby M. W., Gross J. A., Cooke M. P., Levin S. D., Qian X., Perlmutter R. M. Defective T cell receptor signaling in mice lacking the thymic isoform of p59fyn. Cell. 1992 Sep 4;70(5):751–763. doi: 10.1016/0092-8674(92)90309-z. [DOI] [PubMed] [Google Scholar]
  3. Bittorf T., Busfield S. J., Klinken S. P., Tilbrook P. A. Truncated erythropoietin receptor in a murine erythroleukemia cell line. Int J Biochem Cell Biol. 1996 Feb;28(2):175–181. doi: 10.1016/1357-2725(95)00128-x. [DOI] [PubMed] [Google Scholar]
  4. Boise L. H., Minn A. J., June C. H., Lindsten T., Thompson C. B. Growth factors can enhance lymphocyte survival without committing the cell to undergo cell division. Proc Natl Acad Sci U S A. 1995 Jun 6;92(12):5491–5495. doi: 10.1073/pnas.92.12.5491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bolen J. B., Rowley R. B., Spana C., Tsygankov A. Y. The Src family of tyrosine protein kinases in hemopoietic signal transduction. FASEB J. 1992 Dec;6(15):3403–3409. doi: 10.1096/fasebj.6.15.1281458. [DOI] [PubMed] [Google Scholar]
  6. Boulet I., Ralph S., Stanley E., Lock P., Dunn A. R., Green S. P., Phillips W. A. Lipopolysaccharide- and interferon-gamma-induced expression of hck and lyn tyrosine kinases in murine bone marrow-derived macrophages. Oncogene. 1992 Apr;7(4):703–710. [PubMed] [Google Scholar]
  7. Burkhardt A. L., Brunswick M., Bolen J. B., Mond J. J. Anti-immunoglobulin stimulation of B lymphocytes activates src-related protein-tyrosine kinases. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7410–7414. doi: 10.1073/pnas.88.16.7410. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Busfield S. J., Chappell D. S., Jennings G., Trengove N. J., Riches K. J., Callus B. A., Tilbrook P. A., Klinken S. P. Erythropoietin exerts transcriptional and translational control over globin synthesis in J2E cells. Cell Growth Differ. 1995 Apr;6(4):429–437. [PubMed] [Google Scholar]
  9. Busfield S. J., Farr T. J., Singh T., Sainsbury A. J., Klinken S. P. Clonal analysis of erythropoietin stimulated J2E cells reveals asynchrony during terminal differentiation. Growth Factors. 1993;9(4):307–315. doi: 10.3109/08977199308991591. [DOI] [PubMed] [Google Scholar]
  10. Busfield S. J., Klinken S. P. Erythropoietin-induced stimulation of differentiation and proliferation in J2E cells is not mimicked by chemical induction. Blood. 1992 Jul 15;80(2):412–419. [PubMed] [Google Scholar]
  11. Busfield S. J., Meyer G. T., Klinken S. P. Erythropoietin induced ultrastructural alterations to J2E cells and loss of proliferative capacity with terminal differentiation. Growth Factors. 1993;9(4):317–328. doi: 10.3109/08977199308991592. [DOI] [PubMed] [Google Scholar]
  12. Busfield S. J., Riches K. J., Sainsbury A. J., Rossi E., Garcia-Webb P., Klinken S. P. Retrovirally-produced erythropoietin effectively induces differentiation and proliferation of J2E erythroid cells. Growth Factors. 1993;9(2):87–97. [PubMed] [Google Scholar]
  13. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  14. Cichowski K., McCormick F., Brugge J. S. p21rasGAP association with Fyn, Lyn, and Yes in thrombin-activated platelets. J Biol Chem. 1992 Mar 15;267(8):5025–5028. [PubMed] [Google Scholar]
  15. Corey S. J., Burkhardt A. L., Bolen J. B., Geahlen R. L., Tkatch L. S., Tweardy D. J. Granulocyte colony-stimulating factor receptor signaling involves the formation of a three-component complex with Lyn and Syk protein-tyrosine kinases. Proc Natl Acad Sci U S A. 1994 May 24;91(11):4683–4687. doi: 10.1073/pnas.91.11.4683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Corey S., Eguinoa A., Puyana-Theall K., Bolen J. B., Cantley L., Mollinedo F., Jackson T. R., Hawkins P. T., Stephens L. R. Granulocyte macrophage-colony stimulating factor stimulates both association and activation of phosphoinositide 3OH-kinase and src-related tyrosine kinase(s) in human myeloid derived cells. EMBO J. 1993 Jul;12(7):2681–2690. doi: 10.1002/j.1460-2075.1993.tb05929.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Cory S., Maekawa T., McNeall J., Metcalf D. Murine erythroid cell lines derived with c-myc retroviruses respond to leukemia-inhibitory factor, erythropoietin, and interleukin 3. Cell Growth Differ. 1991 Mar;2(3):165–172. [PubMed] [Google Scholar]
  18. Dube S. K., Pragnell I. B., Kluge N., Gaedicke G., Steinheider G., Ostertag W. Induction of endogenous and of spleen focus-forming viruses during dimethylsulfoxide-induced differentiation of mouse erythroleukemia cells transformed by spleen focus-forming virus. Proc Natl Acad Sci U S A. 1975 May;72(5):1863–1867. doi: 10.1073/pnas.72.5.1863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Fields S., Sternglanz R. The two-hybrid system: an assay for protein-protein interactions. Trends Genet. 1994 Aug;10(8):286–292. doi: 10.1016/0168-9525(90)90012-u. [DOI] [PubMed] [Google Scholar]
  20. Grant S. G., O'Dell T. J., Karl K. A., Stein P. L., Soriano P., Kandel E. R. Impaired long-term potentiation, spatial learning, and hippocampal development in fyn mutant mice. Science. 1992 Dec 18;258(5090):1903–1910. doi: 10.1126/science.1361685. [DOI] [PubMed] [Google Scholar]
  21. Inhorn R. C., Carlesso N., Durstin M., Frank D. A., Griffin J. D. Identification of a viability domain in the granulocyte/macrophage colony-stimulating factor receptor beta-chain involving tyrosine-750. Proc Natl Acad Sci U S A. 1995 Sep 12;92(19):8665–8669. doi: 10.1073/pnas.92.19.8665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Keil U., Busfield S. J., Farr T. J., Papadimitriou J., Green A. R., Begley C. G., Klinken S. P. Emergence of myeloid cells from cultures of J2E erythroid cells is linked with karyotypic abnormalities. Cell Growth Differ. 1995 Apr;6(4):439–448. [PubMed] [Google Scholar]
  23. Klingmüller U., Lorenz U., Cantley L. C., Neel B. G., Lodish H. F. Specific recruitment of SH-PTP1 to the erythropoietin receptor causes inactivation of JAK2 and termination of proliferative signals. Cell. 1995 Mar 10;80(5):729–738. doi: 10.1016/0092-8674(95)90351-8. [DOI] [PubMed] [Google Scholar]
  24. Klinken S. P., Nicola N. A., Johnson G. R. In vitro-derived leukemic erythroid cell lines induced by a raf- and myc-containing retrovirus differentiate in response to erythropoietin. Proc Natl Acad Sci U S A. 1988 Nov;85(22):8506–8510. doi: 10.1073/pnas.85.22.8506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kotkow K. J., Orkin S. H. Dependence of globin gene expression in mouse erythroleukemia cells on the NF-E2 heterodimer. Mol Cell Biol. 1995 Aug;15(8):4640–4647. doi: 10.1128/mcb.15.8.4640. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Koury M. J., Bondurant M. C. The molecular mechanism of erythropoietin action. Eur J Biochem. 1992 Dec 15;210(3):649–663. doi: 10.1111/j.1432-1033.1992.tb17466.x. [DOI] [PubMed] [Google Scholar]
  27. Lowell C. A., Soriano P., Varmus H. E. Functional overlap in the src gene family: inactivation of hck and fgr impairs natural immunity. Genes Dev. 1994 Feb 15;8(4):387–398. doi: 10.1101/gad.8.4.387. [DOI] [PubMed] [Google Scholar]
  28. Lu S. J., Rowan S., Bani M. R., Ben-David Y. Retroviral integration within the Fli-2 locus results in inactivation of the erythroid transcription factor NF-E2 in Friend erythroleukemias: evidence that NF-E2 is essential for globin expression. Proc Natl Acad Sci U S A. 1994 Aug 30;91(18):8398–8402. doi: 10.1073/pnas.91.18.8398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Miura O., Nakamura N., Quelle F. W., Witthuhn B. A., Ihle J. N., Aoki N. Erythropoietin induces association of the JAK2 protein tyrosine kinase with the erythropoietin receptor in vivo. Blood. 1994 Sep 1;84(5):1501–1507. [PubMed] [Google Scholar]
  30. Shivdasani R. A., Orkin S. H. Erythropoiesis and globin gene expression in mice lacking the transcription factor NF-E2. Proc Natl Acad Sci U S A. 1995 Sep 12;92(19):8690–8694. doi: 10.1073/pnas.92.19.8690. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Soriano P., Montgomery C., Geske R., Bradley A. Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice. Cell. 1991 Feb 22;64(4):693–702. doi: 10.1016/0092-8674(91)90499-o. [DOI] [PubMed] [Google Scholar]
  32. Sotirellis N., Johnson T. M., Hibbs M. L., Stanley I. J., Stanley E., Dunn A. R., Cheng H. C. Autophosphorylation induces autoactivation and a decrease in the Src homology 2 domain accessibility of the Lyn protein kinase. J Biol Chem. 1995 Dec 15;270(50):29773–29780. doi: 10.1074/jbc.270.50.29773. [DOI] [PubMed] [Google Scholar]
  33. Stanley E., Ralph S., McEwen S., Boulet I., Holtzman D. A., Lock P., Dunn A. R. Alternatively spliced murine lyn mRNAs encode distinct proteins. Mol Cell Biol. 1991 Jul;11(7):3399–3406. doi: 10.1128/mcb.11.7.3399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Takata M., Sabe H., Hata A., Inazu T., Homma Y., Nukada T., Yamamura H., Kurosaki T. Tyrosine kinases Lyn and Syk regulate B cell receptor-coupled Ca2+ mobilization through distinct pathways. EMBO J. 1994 Mar 15;13(6):1341–1349. doi: 10.1002/j.1460-2075.1994.tb06387.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Tilbrook P. A., Bittorf T., Busfield S. J., Chappell D., Klinken S. P. Disrupted signaling in a mutant J2E cell line that shows enhanced viability, but does not proliferate or differentiate, with erythropoietin. J Biol Chem. 1996 Feb 16;271(7):3453–3459. doi: 10.1074/jbc.271.7.3453. [DOI] [PubMed] [Google Scholar]
  36. Witthuhn B. A., Quelle F. W., Silvennoinen O., Yi T., Tang B., Miura O., Ihle J. N. JAK2 associates with the erythropoietin receptor and is tyrosine phosphorylated and activated following stimulation with erythropoietin. Cell. 1993 Jul 30;74(2):227–236. doi: 10.1016/0092-8674(93)90414-l. [DOI] [PubMed] [Google Scholar]
  37. Yamamoto T., Yamanashi Y., Toyoshima K. Association of Src-family kinase Lyn with B-cell antigen receptor. Immunol Rev. 1993 Apr;132:187–206. doi: 10.1111/j.1600-065x.1993.tb00843.x. [DOI] [PubMed] [Google Scholar]
  38. Yamanashi Y., Fukui Y., Wongsasant B., Kinoshita Y., Ichimori Y., Toyoshima K., Yamamoto T. Activation of Src-like protein-tyrosine kinase Lyn and its association with phosphatidylinositol 3-kinase upon B-cell antigen receptor-mediated signaling. Proc Natl Acad Sci U S A. 1992 Feb 1;89(3):1118–1122. doi: 10.1073/pnas.89.3.1118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Yamanashi Y., Fukushige S., Semba K., Sukegawa J., Miyajima N., Matsubara K., Yamamoto T., Toyoshima K. The yes-related cellular gene lyn encodes a possible tyrosine kinase similar to p56lck. Mol Cell Biol. 1987 Jan;7(1):237–243. doi: 10.1128/mcb.7.1.237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Yamanashi Y., Kakiuchi T., Mizuguchi J., Yamamoto T., Toyoshima K. Association of B cell antigen receptor with protein tyrosine kinase Lyn. Science. 1991 Jan 11;251(4990):192–194. doi: 10.1126/science.1702903. [DOI] [PubMed] [Google Scholar]
  41. Yamanashi Y., Miyasaka M., Takeuchi M., Ilic D., Mizuguchi J., Yamamoto T. Differential responses of p56lyn and p53lyn, products of alternatively spliced lyn mRNA, on stimulation of B-cell antigen receptor. Cell Regul. 1991 Dec;2(12):979–987. doi: 10.1091/mbc.2.12.979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Yi T. L., Bolen J. B., Ihle J. N. Hematopoietic cells express two forms of lyn kinase differing by 21 amino acids in the amino terminus. Mol Cell Biol. 1991 May;11(5):2391–2398. doi: 10.1128/mcb.11.5.2391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Yi T., Zhang J., Miura O., Ihle J. N. Hematopoietic cell phosphatase associates with erythropoietin (Epo) receptor after Epo-induced receptor tyrosine phosphorylation: identification of potential binding sites. Blood. 1995 Jan 1;85(1):87–95. [PubMed] [Google Scholar]
  44. Yoshimura A., D'Andrea A. D., Lodish H. F. Friend spleen focus-forming virus glycoprotein gp55 interacts with the erythropoietin receptor in the endoplasmic reticulum and affects receptor metabolism. Proc Natl Acad Sci U S A. 1990 Jun;87(11):4139–4143. doi: 10.1073/pnas.87.11.4139. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES