Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1997 Apr 1;16(7):1721–1731. doi: 10.1093/emboj/16.7.1721

Developmental acquisition of enhancer function requires a unique coactivator activity.

S Majumder 1, Z Zhao 1, K Kaneko 1, M L DePamphilis 1
PMCID: PMC1169775  PMID: 9130716

Abstract

Enhancers are believed to stimulate promoters by relieving chromatin-mediated repression. However, injection of plasmid-encoded genes into mouse oocytes and embryos revealed that enhancers failed to stimulate promoters prior to formation of a two-cell embryo, even though the promoter was repressed in the maternal nucleus of both oocytes and one-cell embryos. The absence of enhancer function was not due to the absence of a required sequence-specific enhancer activation protein, because enhancer function was not elicited even when these proteins either were provided by an expression vector (GAL4:VP16) or were present as an endogenous transcription factor (TEF-1) and shown to be active in stimulating promoters. Instead, enhancer function in vivo required a unique coactivator activity in addition to enhancer-specific DNA binding proteins and promoter repression. This coactivator activity first appeared during mouse development in two- to four-cell embryos, concurrent with the major onset of zygotic gene expression. Competition between various enhancers was observed in these embryos, but not competition between enhancers and promoters, and competition between enhancers was absent in one-cell embryos. Moreover, enhancer function in oocytes could be partially restored by pre-injecting mRNA from cells in which enhancers were active, the same mRNA did not affect enhancer function in two- to four-cell embryos.

Full Text

The Full Text of this article is available as a PDF (545.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Böni J., Coen D. M. Examination of the roles of transcription factor Sp1-binding sites and an octamer motif in trans induction of the herpes simplex virus thymidine kinase gene. J Virol. 1989 Sep;63(9):4088–4092. doi: 10.1128/jvi.63.9.4088-4092.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ge H., Roeder R. G. Purification, cloning, and characterization of a human coactivator, PC4, that mediates transcriptional activation of class II genes. Cell. 1994 Aug 12;78(3):513–523. doi: 10.1016/0092-8674(94)90428-6. [DOI] [PubMed] [Google Scholar]
  3. Grunstein M. Nucleosomes: regulators of transcription. Trends Genet. 1990 Dec;6(12):395–400. doi: 10.1016/0168-9525(90)90299-l. [DOI] [PubMed] [Google Scholar]
  4. Hebbes T. R., Thorne A. W., Clayton A. L., Crane-Robinson C. Histone acetylation and globin gene switching. Nucleic Acids Res. 1992 Mar 11;20(5):1017–1022. doi: 10.1093/nar/20.5.1017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Henery C. C., Miranda M., Wiekowski M., Wilmut I., DePamphilis M. L. Repression of gene expression at the beginning of mouse development. Dev Biol. 1995 Jun;169(2):448–460. doi: 10.1006/dbio.1995.1160. [DOI] [PubMed] [Google Scholar]
  6. Juan L. J., Utley R. T., Adams C. C., Vettese-Dadey M., Workman J. L. Differential repression of transcription factor binding by histone H1 is regulated by the core histone amino termini. EMBO J. 1994 Dec 15;13(24):6031–6040. doi: 10.1002/j.1460-2075.1994.tb06949.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kimelman D., Kirschner M., Scherson T. The events of the midblastula transition in Xenopus are regulated by changes in the cell cycle. Cell. 1987 Feb 13;48(3):399–407. doi: 10.1016/0092-8674(87)90191-7. [DOI] [PubMed] [Google Scholar]
  8. Krieg P. A., Melton D. A. An enhancer responsible for activating transcription at the midblastula transition in Xenopus development. Proc Natl Acad Sci U S A. 1987 Apr;84(8):2331–2335. doi: 10.1073/pnas.84.8.2331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Latham K. E., Solter D., Schultz R. M. Acquisition of a transcriptionally permissive state during the 1-cell stage of mouse embryogenesis. Dev Biol. 1992 Feb;149(2):457–462. doi: 10.1016/0012-1606(92)90300-6. [DOI] [PubMed] [Google Scholar]
  10. Martínez-Salas E., Linney E., Hassell J., DePamphilis M. L. The need for enhancers in gene expression first appears during mouse development with formation of the zygotic nucleus. Genes Dev. 1989 Oct;3(10):1493–1506. doi: 10.1101/gad.3.10.1493. [DOI] [PubMed] [Google Scholar]
  11. McKnight S. L., Kingsbury R. Transcriptional control signals of a eukaryotic protein-coding gene. Science. 1982 Jul 23;217(4557):316–324. doi: 10.1126/science.6283634. [DOI] [PubMed] [Google Scholar]
  12. Miranda M., DePamphilis M. L. Preparation of injection pipettes. Methods Enzymol. 1993;225:407–412. doi: 10.1016/0076-6879(93)25028-z. [DOI] [PubMed] [Google Scholar]
  13. Miranda M., Majumder S., Wiekowski M., DePamphilis M. L. Application of firefly luciferase to preimplantation development. Methods Enzymol. 1993;225:412–433. doi: 10.1016/0076-6879(93)25029-2. [DOI] [PubMed] [Google Scholar]
  14. Nothias J. Y., Majumder S., Kaneko K. J., DePamphilis M. L. Regulation of gene expression at the beginning of mammalian development. J Biol Chem. 1995 Sep 22;270(38):22077–22080. doi: 10.1074/jbc.270.38.22077. [DOI] [PubMed] [Google Scholar]
  15. Nothias J. Y., Miranda M., DePamphilis M. L. Uncoupling of transcription and translation during zygotic gene activation in the mouse. EMBO J. 1996 Oct 15;15(20):5715–5725. [PMC free article] [PubMed] [Google Scholar]
  16. Ohsumi K., Katagiri C. Occurrence of H1 subtypes specific to pronuclei and cleavage-stage cell nuclei of anuran amphibians. Dev Biol. 1991 Sep;147(1):110–120. doi: 10.1016/s0012-1606(05)80011-9. [DOI] [PubMed] [Google Scholar]
  17. Paranjape S. M., Kamakaka R. T., Kadonaga J. T. Role of chromatin structure in the regulation of transcription by RNA polymerase II. Annu Rev Biochem. 1994;63:265–297. doi: 10.1146/annurev.bi.63.070194.001405. [DOI] [PubMed] [Google Scholar]
  18. Prives C., Murakami Y., Kern F. G., Folk W., Basilico C., Hurwitz J. DNA sequence requirements for replication of polyomavirus DNA in vivo and in vitro. Mol Cell Biol. 1987 Oct;7(10):3694–3704. doi: 10.1128/mcb.7.10.3694. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Schultz R. M. Regulation of zygotic gene activation in the mouse. Bioessays. 1993 Aug;15(8):531–538. doi: 10.1002/bies.950150806. [DOI] [PubMed] [Google Scholar]
  20. Seipel K., Georgiev O., Gerber H. P., Schaffner W. Basal components of the transcription apparatus (RNA polymerase II, TATA-binding protein) contain activation domains: is the repetitive C-terminal domain (CTD) of RNA polymerase II a "portable enhancer domain"? Mol Reprod Dev. 1994 Oct;39(2):215–225. doi: 10.1002/mrd.1080390215. [DOI] [PubMed] [Google Scholar]
  21. Shen X., Gorovsky M. A. Linker histone H1 regulates specific gene expression but not global transcription in vivo. Cell. 1996 Aug 9;86(3):475–483. doi: 10.1016/s0092-8674(00)80120-8. [DOI] [PubMed] [Google Scholar]
  22. Stow N. D., Stow E. C. Isolation and characterization of a herpes simplex virus type 1 mutant containing a deletion within the gene encoding the immediate early polypeptide Vmw110. J Gen Virol. 1986 Dec;67(Pt 12):2571–2585. doi: 10.1099/0022-1317-67-12-2571. [DOI] [PubMed] [Google Scholar]
  23. Tazi J., Bird A. Alternative chromatin structure at CpG islands. Cell. 1990 Mar 23;60(6):909–920. doi: 10.1016/0092-8674(90)90339-g. [DOI] [PubMed] [Google Scholar]
  24. Telford N. A., Watson A. J., Schultz G. A. Transition from maternal to embryonic control in early mammalian development: a comparison of several species. Mol Reprod Dev. 1990 May;26(1):90–100. doi: 10.1002/mrd.1080260113. [DOI] [PubMed] [Google Scholar]
  25. Turner B. M. Histone acetylation and control of gene expression. J Cell Sci. 1991 May;99(Pt 1):13–20. doi: 10.1242/jcs.99.1.13. [DOI] [PubMed] [Google Scholar]
  26. Turner B. M., O'Neill L. P. Histone acetylation in chromatin and chromosomes. Semin Cell Biol. 1995 Aug;6(4):229–236. doi: 10.1006/scel.1995.0031. [DOI] [PubMed] [Google Scholar]
  27. Wiekowski M., Miranda M., DePamphilis M. L. Regulation of gene expression in preimplantation mouse embryos: effects of the zygotic clock and the first mitosis on promoter and enhancer activities. Dev Biol. 1991 Oct;147(2):403–414. doi: 10.1016/0012-1606(91)90298-h. [DOI] [PubMed] [Google Scholar]
  28. Wiekowski M., Miranda M., DePamphilis M. L. Requirements for promoter activity in mouse oocytes and embryos distinguish paternal pronuclei from maternal and zygotic nuclei. Dev Biol. 1993 Sep;159(1):366–378. doi: 10.1006/dbio.1993.1248. [DOI] [PubMed] [Google Scholar]
  29. Wolffe A. P. Dominant and specific repression of Xenopus oocyte 5S RNA genes and satellite I DNA by histone H1. EMBO J. 1989 Feb;8(2):527–537. doi: 10.1002/j.1460-2075.1989.tb03407.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Wolffe A. P., Pruss D. Targeting chromatin disruption: Transcription regulators that acetylate histones. Cell. 1996 Mar 22;84(6):817–819. doi: 10.1016/s0092-8674(00)81059-4. [DOI] [PubMed] [Google Scholar]
  31. Workman J. L., Buchman A. R. Multiple functions of nucleosomes and regulatory factors in transcription. Trends Biochem Sci. 1993 Mar;18(3):90–95. doi: 10.1016/0968-0004(93)90160-o. [DOI] [PubMed] [Google Scholar]
  32. Worrad D. M., Ram P. T., Schultz R. M. Regulation of gene expression in the mouse oocyte and early preimplantation embryo: developmental changes in Sp1 and TATA box-binding protein, TBP. Development. 1994 Aug;120(8):2347–2357. doi: 10.1242/dev.120.8.2347. [DOI] [PubMed] [Google Scholar]
  33. Worrad D. M., Turner B. M., Schultz R. M. Temporally restricted spatial localization of acetylated isoforms of histone H4 and RNA polymerase II in the 2-cell mouse embryo. Development. 1995 Sep;121(9):2949–2959. doi: 10.1242/dev.121.9.2949. [DOI] [PubMed] [Google Scholar]
  34. Xu L., Rungger D., Georgiev O., Seipel K., Schaffner W. Different potential of cellular and viral activators of transcription revealed in oocytes and early embryos of Xenopus laevis. Biol Chem Hoppe Seyler. 1994 Feb;375(2):105–112. doi: 10.1515/bchm3.1994.375.2.105. [DOI] [PubMed] [Google Scholar]
  35. Zimmermann J. W., Schultz R. M. Analysis of gene expression in the preimplantation mouse embryo: use of mRNA differential display. Proc Natl Acad Sci U S A. 1994 Jun 7;91(12):5456–5460. doi: 10.1073/pnas.91.12.5456. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES