Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1997 Apr 1;16(7):1742–1750. doi: 10.1093/emboj/16.7.1742

The distal GATA sequences of the sid1 promoter of Ustilago maydis mediate iron repression of siderophore production and interact directly with Urbs1, a GATA family transcription factor.

Z An 1, B Mei 1, W M Yuan 1, S A Leong 1
PMCID: PMC1169777  PMID: 9130718

Abstract

The sid1 and urbs1 genes encode L-ornithine N5-oxygenase and a GATA family transcription regulator, respectively, for siderophore biosynthesis in Ustilago maydis. The basic promoter and iron-regulatory sequences of the U. maydis sid1 gene were defined by fusing restriction and Bal31 nuclease-generated deletion fragments of the promoter region with the Escherichia coli beta-glucuronidase (GUS) reporter gene. Sequences required for basal expression of sid1 mapped within 1043 bp upstream of the translation start site and include the first untranslated exon and first intron. Sequences needed for iron-regulated expression of sid1 were localized to a 306 bp region mapping 2.3 and 2.6 kb upstream of the ATG. The 306 bp region contains two G/TGATAA sequences, consensus DNA binding sites of GATA family transcription factors. Deletion or site-directed mutation of either or both GATA sequences resulted in deregulated expression of sid1. In vitro DNA binding studies showed that Urbs1 binds to the 3'-GATA site in the 306 bp iron-responsive region. However, deletion of 1.1 kb between the distal GATA sites and the basal promoter region led to deregulated expression of GUS, indicating that these GATA sequences are by themselves insufficient to regulate sid1. In vitro DNA binding and in vivo reporter gene analysis revealed that siderophores are not co-repressors of Urbs1.

Full Text

The Full Text of this article is available as a PDF (359.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Askwith C., Eide D., Van Ho A., Bernard P. S., Li L., Davis-Kaplan S., Sipe D. M., Kaplan J. The FET3 gene of S. cerevisiae encodes a multicopper oxidase required for ferrous iron uptake. Cell. 1994 Jan 28;76(2):403–410. doi: 10.1016/0092-8674(94)90346-8. [DOI] [PubMed] [Google Scholar]
  2. Bagg A., Neilands J. B. Molecular mechanism of regulation of siderophore-mediated iron assimilation. Microbiol Rev. 1987 Dec;51(4):509–518. doi: 10.1128/mr.51.4.509-518.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bellomy G. R., Record M. T., Jr Stable DNA loops in vivo and in vitro: roles in gene regulation at a distance and in biophysical characterization of DNA. Prog Nucleic Acid Res Mol Biol. 1990;39:81–128. doi: 10.1016/s0079-6603(08)60624-8. [DOI] [PubMed] [Google Scholar]
  4. Brown W. M., Taylor G. R. The 5'-sequence of the murine Hox-b3 (Hox-2.7) gene and its intron contain multiple transcription-regulatory elements. Int J Biochem. 1994 Dec;26(12):1403–1409. doi: 10.1016/0020-711x(94)90184-8. [DOI] [PubMed] [Google Scholar]
  5. Budde A. D., Leong S. A. Characterization of siderophores from Ustilago maydis. Mycopathologia. 1989 Nov;108(2):125–133. doi: 10.1007/BF00436063. [DOI] [PubMed] [Google Scholar]
  6. Corrochano L. M., Lauter F. R., Ebbole D. J., Yanofsky C. Light and developmental regulation of the gene con-10 of Neurospora crassa. Dev Biol. 1995 Jan;167(1):190–200. doi: 10.1006/dbio.1995.1016. [DOI] [PubMed] [Google Scholar]
  7. Crestani M., Galli G., Chiang J. Y. Genomic cloning, sequencing, and analysis of the hamster cholesterol 7 alpha-hydroxylase gene (CYP7). Arch Biochem Biophys. 1993 Nov 1;306(2):451–460. doi: 10.1006/abbi.1993.1537. [DOI] [PubMed] [Google Scholar]
  8. De Silva D. M., Askwith C. C., Eide D., Kaplan J. The FET3 gene product required for high affinity iron transport in yeast is a cell surface ferroxidase. J Biol Chem. 1995 Jan 20;270(3):1098–1101. doi: 10.1074/jbc.270.3.1098. [DOI] [PubMed] [Google Scholar]
  9. Dunn T. M., Hahn S., Ogden S., Schleif R. F. An operator at -280 base pairs that is required for repression of araBAD operon promoter: addition of DNA helical turns between the operator and promoter cyclically hinders repression. Proc Natl Acad Sci U S A. 1984 Aug;81(16):5017–5020. doi: 10.1073/pnas.81.16.5017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Georgatsou E., Alexandraki D. Two distinctly regulated genes are required for ferric reduction, the first step of iron uptake in Saccharomyces cerevisiae. Mol Cell Biol. 1994 May;14(5):3065–3073. doi: 10.1128/mcb.14.5.3065. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gold S. E., Bakkeren G., Davies J. E., Kronstad J. W. Three selectable markers for transformation of Ustilago maydis. Gene. 1994 May 16;142(2):225–230. doi: 10.1016/0378-1119(94)90265-8. [DOI] [PubMed] [Google Scholar]
  12. Halliwell B., Gutteridge J. M. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J. 1984 Apr 1;219(1):1–14. doi: 10.1042/bj2190001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Herschbach B. M., Arnaud M. B., Johnson A. D. Transcriptional repression directed by the yeast alpha 2 protein in vitro. Nature. 1994 Jul 28;370(6487):309–311. doi: 10.1038/370309a0. [DOI] [PubMed] [Google Scholar]
  14. Hofmann J. F., Laroche T., Brand A. H., Gasser S. M. RAP-1 factor is necessary for DNA loop formation in vitro at the silent mating type locus HML. Cell. 1989 Jun 2;57(5):725–737. doi: 10.1016/0092-8674(89)90788-5. [DOI] [PubMed] [Google Scholar]
  15. Huo L., Martin K. J., Schleif R. Alternative DNA loops regulate the arabinose operon in Escherichia coli. Proc Natl Acad Sci U S A. 1988 Aug;85(15):5444–5448. doi: 10.1073/pnas.85.15.5444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Imlay J. A., Linn S. DNA damage and oxygen radical toxicity. Science. 1988 Jun 3;240(4857):1302–1309. doi: 10.1126/science.3287616. [DOI] [PubMed] [Google Scholar]
  17. Klausner R. D., Dancis A. A genetic approach to elucidating eukaryotic iron metabolism. FEBS Lett. 1994 Nov 28;355(2):109–113. doi: 10.1016/0014-5793(94)01111-7. [DOI] [PubMed] [Google Scholar]
  18. Martin K., Huo L., Schleif R. F. The DNA loop model for ara repression: AraC protein occupies the proposed loop sites in vivo and repression-negative mutations lie in these same sites. Proc Natl Acad Sci U S A. 1986 Jun;83(11):3654–3658. doi: 10.1073/pnas.83.11.3654. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mei B., Budde A. D., Leong S. A. sid1, a gene initiating siderophore biosynthesis in Ustilago maydis: molecular characterization, regulation by iron, and role in phytopathogenicity. Proc Natl Acad Sci U S A. 1993 Feb 1;90(3):903–907. doi: 10.1073/pnas.90.3.903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Merika M., Orkin S. H. Functional synergy and physical interactions of the erythroid transcription factor GATA-1 with the Krüppel family proteins Sp1 and EKLF. Mol Cell Biol. 1995 May;15(5):2437–2447. doi: 10.1128/mcb.15.5.2437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Peleg Y., Metzenberg R. L. Analysis of the DNA-binding and dimerization activities of Neurospora crassa transcription factor NUC-1. Mol Cell Biol. 1994 Dec;14(12):7816–7826. doi: 10.1128/mcb.14.12.7816. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Schleif R. DNA looping. Annu Rev Biochem. 1992;61:199–223. doi: 10.1146/annurev.bi.61.070192.001215. [DOI] [PubMed] [Google Scholar]
  23. Stearman R., Yuan D. S., Yamaguchi-Iwai Y., Klausner R. D., Dancis A. A permease-oxidase complex involved in high-affinity iron uptake in yeast. Science. 1996 Mar 15;271(5255):1552–1557. doi: 10.1126/science.271.5255.1552. [DOI] [PubMed] [Google Scholar]
  24. Trainor C. D., Omichinski J. G., Vandergon T. L., Gronenborn A. M., Clore G. M., Felsenfeld G. A palindromic regulatory site within vertebrate GATA-1 promoters requires both zinc fingers of the GATA-1 DNA-binding domain for high-affinity interaction. Mol Cell Biol. 1996 May;16(5):2238–2247. doi: 10.1128/mcb.16.5.2238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Tsukuda T., Carleton S., Fotheringham S., Holloman W. K. Isolation and characterization of an autonomously replicating sequence from Ustilago maydis. Mol Cell Biol. 1988 Sep;8(9):3703–3709. doi: 10.1128/mcb.8.9.3703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Voisard C., Wang J., McEvoy J. L., Xu P., Leong S. A. urbs1, a gene regulating siderophore biosynthesis in Ustilago maydis, encodes a protein similar to the erythroid transcription factor GATA-1. Mol Cell Biol. 1993 Nov;13(11):7091–7100. doi: 10.1128/mcb.13.11.7091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Wang J., Holden D. W., Leong S. A. Gene transfer system for the phytopathogenic fungus Ustilago maydis. Proc Natl Acad Sci U S A. 1988 Feb;85(3):865–869. doi: 10.1073/pnas.85.3.865. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Xiao X., Marzluf G. A. Identification of the native NIT2 major nitrogen regulatory protein in nuclear extracts of Neurospora crassa. Genetica. 1996 Mar;97(2):153–163. doi: 10.1007/BF00054622. [DOI] [PubMed] [Google Scholar]
  29. Yamaguchi-Iwai Y., Stearman R., Dancis A., Klausner R. D. Iron-regulated DNA binding by the AFT1 protein controls the iron regulon in yeast. EMBO J. 1996 Jul 1;15(13):3377–3384. [PMC free article] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES