Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1997 Apr 15;16(8):1858–1864. doi: 10.1093/emboj/16.8.1858

Unrestrained nociceptive response and disregulation of hearing ability in mice lacking the nociceptin/orphaninFQ receptor.

M Nishi 1, T Houtani 1, Y Noda 1, T Mamiya 1, K Sato 1, T Doi 1, J Kuno 1, H Takeshima 1, T Nukada 1, T Nabeshima 1, T Yamashita 1, T Noda 1, T Sugimoto 1
PMCID: PMC1169789  PMID: 9155012

Abstract

In the G-protein-coupled receptor superfamily, the opioid receptor subfamily is constituted of the three distinct opioid receptors (namely delta-, mu- and kappa-subtypes) and the receptor for nociceptin (also designated orphaninFQ). The members of the opioid receptor subfamily were known to mediate a variety of cellular inhibitory effects. The three opioid receptors are known to play central roles in mediating analgesia and many other physiological activities; however, the nociceptin receptor was identified recently and less is known about its physiological roles. Here we report the generation and characterization of mice lacking the nociceptin receptor. The knockout mice showed no significant differences in nociceptive threshold and locomotor activity compared with control mice, but they lost nociceptin-induced behavioral responses. These results indicate that the nociceptin system is not essential for regulation of nociception or locomotor activity. On the other hand, we found insufficient recovery of hearing ability from the adaptation to sound exposure in the mutant mice. Thus, the nociceptin system appears to participate in the regulation of the auditory system.

Full Text

The Full Text of this article is available as a PDF (422.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bajocchi G., Feldman S. H., Crystal R. G., Mastrangeli A. Direct in vivo gene transfer to ependymal cells in the central nervous system using recombinant adenovirus vectors. Nat Genet. 1993 Mar;3(3):229–234. doi: 10.1038/ng0393-229. [DOI] [PubMed] [Google Scholar]
  2. Borg E. Efferent inhibition of afferent acoustic activity in the unanesthetized rabbit. Exp Neurol. 1971 Jun;31(3):301–312. doi: 10.1016/0014-4886(71)90234-2. [DOI] [PubMed] [Google Scholar]
  3. Brown M. C. Fiber pathways and branching patterns of biocytin-labeled olivocochlear neurons in the mouse brainstem. J Comp Neurol. 1993 Nov 22;337(4):600–613. doi: 10.1002/cne.903370406. [DOI] [PubMed] [Google Scholar]
  4. Bunzow J. R., Saez C., Mortrud M., Bouvier C., Williams J. T., Low M., Grandy D. K. Molecular cloning and tissue distribution of a putative member of the rat opioid receptor gene family that is not a mu, delta or kappa opioid receptor type. FEBS Lett. 1994 Jun 27;347(2-3):284–288. doi: 10.1016/0014-5793(94)00561-3. [DOI] [PubMed] [Google Scholar]
  5. Dewson J. H., 3rd, Efferent OLIVOCOCHLEAR BUND sone relationships to stimulus discrimination in noise. J Neurophysiol. 1968 Jan;31(1):122–130. doi: 10.1152/jn.1968.31.1.122. [DOI] [PubMed] [Google Scholar]
  6. Fukuda K., Kato S., Mori K., Nishi M., Takeshima H., Iwabe N., Miyata T., Houtani T., Sugimoto T. cDNA cloning and regional distribution of a novel member of the opioid receptor family. FEBS Lett. 1994 Apr 18;343(1):42–46. doi: 10.1016/0014-5793(94)80603-9. [DOI] [PubMed] [Google Scholar]
  7. Gerlai R. Gene-targeting studies of mammalian behavior: is it the mutation or the background genotype? Trends Neurosci. 1996 May;19(5):177–181. doi: 10.1016/s0166-2236(96)20020-7. [DOI] [PubMed] [Google Scholar]
  8. Halford W. P., Gebhardt B. M., Carr D. J. Functional role and sequence analysis of a lymphocyte orphan opioid receptor. J Neuroimmunol. 1995 Jun;59(1-2):91–101. doi: 10.1016/0165-5728(95)00030-6. [DOI] [PubMed] [Google Scholar]
  9. Hille B. G protein-coupled mechanisms and nervous signaling. Neuron. 1992 Aug;9(2):187–195. doi: 10.1016/0896-6273(92)90158-a. [DOI] [PubMed] [Google Scholar]
  10. Houtani T., Nishi M., Takeshima H., Nukada T., Sugimoto T. Structure and regional distribution of nociceptin/orphanin FQ precursor. Biochem Biophys Res Commun. 1996 Feb 27;219(3):714–719. doi: 10.1006/bbrc.1996.0300. [DOI] [PubMed] [Google Scholar]
  11. Klinke R., Galley N. Efferent innervation of vestibular and auditory receptors. Physiol Rev. 1974 Apr;54(2):316–357. doi: 10.1152/physrev.1974.54.2.316. [DOI] [PubMed] [Google Scholar]
  12. Knapp R. J., Malatynska E., Collins N., Fang L., Wang J. Y., Hruby V. J., Roeske W. R., Yamamura H. I. Molecular biology and pharmacology of cloned opioid receptors. FASEB J. 1995 Apr;9(7):516–525. doi: 10.1096/fasebj.9.7.7737460. [DOI] [PubMed] [Google Scholar]
  13. Li E., Bestor T. H., Jaenisch R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell. 1992 Jun 12;69(6):915–926. doi: 10.1016/0092-8674(92)90611-f. [DOI] [PubMed] [Google Scholar]
  14. Loh H. H., Smith A. P. Molecular characterization of opioid receptors. Annu Rev Pharmacol Toxicol. 1990;30:123–147. doi: 10.1146/annurev.pa.30.040190.001011. [DOI] [PubMed] [Google Scholar]
  15. Matthes H. W., Maldonado R., Simonin F., Valverde O., Slowe S., Kitchen I., Befort K., Dierich A., Le Meur M., Dollé P. Loss of morphine-induced analgesia, reward effect and withdrawal symptoms in mice lacking the mu-opioid-receptor gene. Nature. 1996 Oct 31;383(6603):819–823. doi: 10.1038/383819a0. [DOI] [PubMed] [Google Scholar]
  16. Meunier J. C., Mollereau C., Toll L., Suaudeau C., Moisand C., Alvinerie P., Butour J. L., Guillemot J. C., Ferrara P., Monsarrat B. Isolation and structure of the endogenous agonist of opioid receptor-like ORL1 receptor. Nature. 1995 Oct 12;377(6549):532–535. doi: 10.1038/377532a0. [DOI] [PubMed] [Google Scholar]
  17. Mollereau C., Parmentier M., Mailleux P., Butour J. L., Moisand C., Chalon P., Caput D., Vassart G., Meunier J. C. ORL1, a novel member of the opioid receptor family. Cloning, functional expression and localization. FEBS Lett. 1994 Mar 14;341(1):33–38. doi: 10.1016/0014-5793(94)80235-1. [DOI] [PubMed] [Google Scholar]
  18. Mollereau C., Simons M. J., Soularue P., Liners F., Vassart G., Meunier J. C., Parmentier M. Structure, tissue distribution, and chromosomal localization of the prepronociceptin gene. Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8666–8670. doi: 10.1073/pnas.93.16.8666. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mountain D. C. Changes in endolymphatic potential and crossed olivocochlear bundle stimulation alter cochlear mechanics. Science. 1980 Oct 3;210(4465):71–72. doi: 10.1126/science.7414321. [DOI] [PubMed] [Google Scholar]
  20. Nishi M., Takeshima H., Mori M., Nakagawara K., Takeuchi T. Structure and chromosomal mapping of genes for the mouse kappa-opioid receptor and an opioid receptor homologue (MOR-C). Biochem Biophys Res Commun. 1994 Dec 15;205(2):1353–1357. doi: 10.1006/bbrc.1994.2814. [DOI] [PubMed] [Google Scholar]
  21. Noda Y., Yamada K., Furukawa H., Nabeshima T. Involvement of nitric oxide in phencyclidine-induced hyperlocomotion in mice. Eur J Pharmacol. 1995 Nov 24;286(3):291–297. doi: 10.1016/0014-2999(95)00464-x. [DOI] [PubMed] [Google Scholar]
  22. Nothacker H. P., Reinscheid R. K., Mansour A., Henningsen R. A., Ardati A., Monsma F. J., Jr, Watson S. J., Civelli O. Primary structure and tissue distribution of the orphanin FQ precursor. Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8677–8682. doi: 10.1073/pnas.93.16.8677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Okuda-Ashitaka E., Tachibana S., Houtani T., Minami T., Masu Y., Nishi M., Takeshima H., Sugimoto T., Ito S. Identification and characterization of an endogenous ligand for opioid receptor homologue ROR-C: its involvement in allodynic response to innocuous stimulus. Brain Res Mol Brain Res. 1996 Dec 31;43(1-2):96–104. doi: 10.1016/s0169-328x(96)00165-9. [DOI] [PubMed] [Google Scholar]
  24. Reinscheid R. K., Nothacker H. P., Bourson A., Ardati A., Henningsen R. A., Bunzow J. R., Grandy D. K., Langen H., Monsma F. J., Jr, Civelli O. Orphanin FQ: a neuropeptide that activates an opioidlike G protein-coupled receptor. Science. 1995 Nov 3;270(5237):792–794. doi: 10.1126/science.270.5237.792. [DOI] [PubMed] [Google Scholar]
  25. Saito Y., Maruyama K., Kawano H., Hagino-Yamagishi K., Kawamura K., Saido T. C., Kawashima S. Molecular cloning and characterization of a novel form of neuropeptide gene as a developmentally regulated molecule. J Biol Chem. 1996 Jun 28;271(26):15615–15622. doi: 10.1074/jbc.271.26.15615. [DOI] [PubMed] [Google Scholar]
  26. Simmons D. D., Mansdorf N. B., Kim J. H. Olivocochlear innervation of inner and outer hair cells during postnatal maturation: evidence for a waiting period. J Comp Neurol. 1996 Jul 8;370(4):551–562. doi: 10.1002/(SICI)1096-9861(19960708)370:4<551::AID-CNE10>3.0.CO;2-M. [DOI] [PubMed] [Google Scholar]
  27. Takeshima H., Iino M., Takekura H., Nishi M., Kuno J., Minowa O., Takano H., Noda T. Excitation-contraction uncoupling and muscular degeneration in mice lacking functional skeletal muscle ryanodine-receptor gene. Nature. 1994 Jun 16;369(6481):556–559. doi: 10.1038/369556a0. [DOI] [PubMed] [Google Scholar]
  28. Vetter D. E., Adams J. C., Mugnaini E. Chemically distinct rat olivocochlear neurons. Synapse. 1991 Jan;7(1):21–43. doi: 10.1002/syn.890070104. [DOI] [PubMed] [Google Scholar]
  29. Wick M. J., Minnerath S. R., Roy S., Ramakrishnan S., Loh H. H. Expression of alternate forms of brain opioid 'orphan' receptor mRNA in activated human peripheral blood lymphocytes and lymphocytic cell lines. Brain Res Mol Brain Res. 1995 Sep;32(2):342–347. doi: 10.1016/0169-328x(95)00096-b. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES