Abstract
The diverse forms of protein phosphatase 1 in vivo result from the association of its catalytic subunit (PP1c) with different regulatory subunits, one of which is the G-subunit (G(M)) that targets PP1c to glycogen particles in muscle. Here we report the structure, at 3.0 A resolution, of PP1c in complex with a 13 residue peptide (G(M[63-75])) of G(M). The residues in G(M[63-75]) that interact with PP1c are those in the Arg/Lys-Val/Ile-Xaa-Phe motif that is present in almost every other identified mammalian PP1-binding subunit. Disrupting this motif in the G(M[63-75]) peptide and the M(110[1-38]) peptide (which mimics the myofibrillar targeting M110 subunit in stimulating the dephosphorylation of myosin) prevents these peptides from interacting with PP1. A short peptide from the PP1-binding protein p53BP2 that contains the RVXF motif also interacts with PP1c. These findings identify a recognition site on PP1c, invariant from yeast to humans, for a critical structural motif on regulatory subunits. This explains why the binding of PP1 to its regulatory subunits is mutually exclusive, and suggests a novel approach for identifying the functions of PP1-binding proteins whose roles are unknown.
Full Text
The Full Text of this article is available as a PDF (739.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aitken A., Bilham T., Cohen P. Complete primary structure of protein phosphatase inhibitor-1 from rabbit skeletal muscle. Eur J Biochem. 1982 Aug;126(2):235–246. doi: 10.1111/j.1432-1033.1982.tb06771.x. [DOI] [PubMed] [Google Scholar]
- Barford D., Keller J. C. Co-crystallization of the catalytic subunit of the serine/threonine specific protein phosphatase 1 from human in complex with microcystin LR. J Mol Biol. 1994 Jan 14;235(2):763–766. doi: 10.1006/jmbi.1994.1027. [DOI] [PubMed] [Google Scholar]
- Barton G. J., Cohen P. T., Barford D. Conservation analysis and structure prediction of the protein serine/threonine phosphatases. Sequence similarity with diadenosine tetraphosphatase from Escherichia coli suggests homology to the protein phosphatases. Eur J Biochem. 1994 Feb 15;220(1):225–237. doi: 10.1111/j.1432-1033.1994.tb18618.x. [DOI] [PubMed] [Google Scholar]
- Beullens M., Stalmans W., Bollen M. Characterization of a ribosomal inhibitory polypeptide of protein phosphatase-1 from rat liver. Eur J Biochem. 1996 Jul 1;239(1):183–189. doi: 10.1111/j.1432-1033.1996.0183u.x. [DOI] [PubMed] [Google Scholar]
- Beullens M., Van Eynde A., Bollen M., Stalmans W. Inactivation of nuclear inhibitory polypeptides of protein phosphatase-1 (NIPP-1) by protein kinase A. J Biol Chem. 1993 Jun 25;268(18):13172–13177. [PubMed] [Google Scholar]
- Beullens M., Van Eynde A., Stalmans W., Bollen M. The isolation of novel inhibitory polypeptides of protein phosphatase 1 from bovine thymus nuclei. J Biol Chem. 1992 Aug 15;267(23):16538–16544. [PubMed] [Google Scholar]
- Cohen P., Alemany S., Hemmings B. A., Resink T. J., Strålfors P., Tung H. Y. Protein phosphatase-1 and protein phosphatase-2A from rabbit skeletal muscle. Methods Enzymol. 1988;159:390–408. doi: 10.1016/0076-6879(88)59039-0. [DOI] [PubMed] [Google Scholar]
- Cohen P. Signal integration at the level of protein kinases, protein phosphatases and their substrates. Trends Biochem Sci. 1992 Oct;17(10):408–413. doi: 10.1016/0968-0004(92)90010-7. [DOI] [PubMed] [Google Scholar]
- Cohen P. The structure and regulation of protein phosphatases. Annu Rev Biochem. 1989;58:453–508. doi: 10.1146/annurev.bi.58.070189.002321. [DOI] [PubMed] [Google Scholar]
- Derrick J. P., Wigley D. B. Crystal structure of a streptococcal protein G domain bound to an Fab fragment. Nature. 1992 Oct 22;359(6397):752–754. doi: 10.1038/359752a0. [DOI] [PubMed] [Google Scholar]
- Desdouits F., Cheetham J. J., Huang H. B., Kwon Y. G., da Cruz e Silva E. F., Denefle P., Ehrlich M. E., Nairn A. C., Greengard P., Girault J. A. Mechanism of inhibition of protein phosphatase 1 by DARPP-32: studies with recombinant DARPP-32 and synthetic peptides. Biochem Biophys Res Commun. 1995 Jan 17;206(2):652–658. doi: 10.1006/bbrc.1995.1092. [DOI] [PubMed] [Google Scholar]
- Dingwall C., Laskey R. A. Nuclear targeting sequences--a consensus? Trends Biochem Sci. 1991 Dec;16(12):478–481. doi: 10.1016/0968-0004(91)90184-w. [DOI] [PubMed] [Google Scholar]
- Doherty M. J., Moorhead G., Morrice N., Cohen P., Cohen P. T. Amino acid sequence and expression of the hepatic glycogen-binding (GL)-subunit of protein phosphatase-1. FEBS Lett. 1995 Nov 20;375(3):294–298. doi: 10.1016/0014-5793(95)01184-g. [DOI] [PubMed] [Google Scholar]
- Doherty M. J., Young P. R., Cohen P. T. Amino acid sequence of a novel protein phosphatase 1 binding protein (R5) which is related to the liver- and muscle-specific glycogen binding subunits of protein phosphatase 1. FEBS Lett. 1996 Dec 16;399(3):339–343. doi: 10.1016/s0014-5793(96)01357-9. [DOI] [PubMed] [Google Scholar]
- Doyle D. A., Lee A., Lewis J., Kim E., Sheng M., MacKinnon R. Crystal structures of a complexed and peptide-free membrane protein-binding domain: molecular basis of peptide recognition by PDZ. Cell. 1996 Jun 28;85(7):1067–1076. doi: 10.1016/s0092-8674(00)81307-0. [DOI] [PubMed] [Google Scholar]
- Durfee T., Becherer K., Chen P. L., Yeh S. H., Yang Y., Kilburn A. E., Lee W. H., Elledge S. J. The retinoblastoma protein associates with the protein phosphatase type 1 catalytic subunit. Genes Dev. 1993 Apr;7(4):555–569. doi: 10.1101/gad.7.4.555. [DOI] [PubMed] [Google Scholar]
- Egloff M. P., Cohen P. T., Reinemer P., Barford D. Crystal structure of the catalytic subunit of human protein phosphatase 1 and its complex with tungstate. J Mol Biol. 1995 Dec 15;254(5):942–959. doi: 10.1006/jmbi.1995.0667. [DOI] [PubMed] [Google Scholar]
- Endo S., Zhou X., Connor J., Wang B., Shenolikar S. Multiple structural elements define the specificity of recombinant human inhibitor-1 as a protein phosphatase-1 inhibitor. Biochemistry. 1996 Apr 23;35(16):5220–5228. doi: 10.1021/bi952940f. [DOI] [PubMed] [Google Scholar]
- Faux M. C., Scott J. D. More on target with protein phosphorylation: conferring specificity by location. Trends Biochem Sci. 1996 Aug;21(8):312–315. [PubMed] [Google Scholar]
- François J. M., Thompson-Jaeger S., Skroch J., Zellenka U., Spevak W., Tatchell K. GAC1 may encode a regulatory subunit for protein phosphatase type 1 in Saccharomyces cerevisiae. EMBO J. 1992 Jan;11(1):87–96. doi: 10.1002/j.1460-2075.1992.tb05031.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frederick D. L., Tatchell K. The REG2 gene of Saccharomyces cerevisiae encodes a type 1 protein phosphatase-binding protein that functions with Reg1p and the Snf1 protein kinase to regulate growth. Mol Cell Biol. 1996 Jun;16(6):2922–2931. doi: 10.1128/mcb.16.6.2922. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldberg J., Huang H. B., Kwon Y. G., Greengard P., Nairn A. C., Kuriyan J. Three-dimensional structure of the catalytic subunit of protein serine/threonine phosphatase-1. Nature. 1995 Aug 31;376(6543):745–753. doi: 10.1038/376745a0. [DOI] [PubMed] [Google Scholar]
- Griffith J. P., Kim J. L., Kim E. E., Sintchak M. D., Thomson J. A., Fitzgibbon M. J., Fleming M. A., Caron P. R., Hsiao K., Navia M. A. X-ray structure of calcineurin inhibited by the immunophilin-immunosuppressant FKBP12-FK506 complex. Cell. 1995 Aug 11;82(3):507–522. doi: 10.1016/0092-8674(95)90439-5. [DOI] [PubMed] [Google Scholar]
- Helps N. R., Barker H. M., Elledge S. J., Cohen P. T. Protein phosphatase 1 interacts with p53BP2, a protein which binds to the tumour suppressor p53. FEBS Lett. 1995 Dec 27;377(3):295–300. doi: 10.1016/0014-5793(95)01347-4. [DOI] [PubMed] [Google Scholar]
- Hemmings H. C., Jr, Nairn A. C., Elliott J. I., Greengard P. Synthetic peptide analogs of DARPP-32 (Mr 32,000 dopamine- and cAMP-regulated phosphoprotein), an inhibitor of protein phosphatase-1. Phosphorylation, dephosphorylation, and inhibitory activity. J Biol Chem. 1990 Nov 25;265(33):20369–20376. [PubMed] [Google Scholar]
- Hirano K., Ito M., Hartshorne D. J. Interaction of the ribosomal protein, L5, with protein phosphatase type 1. J Biol Chem. 1995 Aug 25;270(34):19786–19790. doi: 10.1074/jbc.270.34.19786. [DOI] [PubMed] [Google Scholar]
- Hunter T. Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling. Cell. 1995 Jan 27;80(2):225–236. doi: 10.1016/0092-8674(95)90405-0. [DOI] [PubMed] [Google Scholar]
- Jagiello I., Beullens M., Stalmans W., Bollen M. Subunit structure and regulation of protein phosphatase-1 in rat liver nuclei. J Biol Chem. 1995 Jul 21;270(29):17257–17263. doi: 10.1074/jbc.270.29.17257. [DOI] [PubMed] [Google Scholar]
- Lee B., Richards F. M. The interpretation of protein structures: estimation of static accessibility. J Mol Biol. 1971 Feb 14;55(3):379–400. doi: 10.1016/0022-2836(71)90324-x. [DOI] [PubMed] [Google Scholar]
- Mermoud J. E., Cohen P., Lamond A. I. Ser/Thr-specific protein phosphatases are required for both catalytic steps of pre-mRNA splicing. Nucleic Acids Res. 1992 Oct 25;20(20):5263–5269. doi: 10.1093/nar/20.20.5263. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moorhead G., MacKintosh C., Morrice N., Cohen P. Purification of the hepatic glycogen-associated form of protein phosphatase-1 by microcystin-Sepharose affinity chromatography. FEBS Lett. 1995 Apr 3;362(2):101–105. doi: 10.1016/0014-5793(95)00197-h. [DOI] [PubMed] [Google Scholar]
- Moorhead G., MacKintosh R. W., Morrice N., Gallagher T., MacKintosh C. Purification of type 1 protein (serine/threonine) phosphatases by microcystin-Sepharose affinity chromatography. FEBS Lett. 1994 Dec 12;356(1):46–50. doi: 10.1016/0014-5793(94)01232-6. [DOI] [PubMed] [Google Scholar]
- Nassar N., Horn G., Herrmann C., Scherer A., McCormick F., Wittinghofer A. The 2.2 A crystal structure of the Ras-binding domain of the serine/threonine kinase c-Raf1 in complex with Rap1A and a GTP analogue. Nature. 1995 Jun 15;375(6532):554–560. doi: 10.1038/375554a0. [DOI] [PubMed] [Google Scholar]
- Naumovski L., Cleary M. L. The p53-binding protein 53BP2 also interacts with Bc12 and impedes cell cycle progression at G2/M. Mol Cell Biol. 1996 Jul;16(7):3884–3892. doi: 10.1128/mcb.16.7.3884. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nelson K. K., Holmer M., Lemmon S. K. SCD5, a suppressor of clathrin deficiency, encodes a novel protein with a late secretory function in yeast. Mol Biol Cell. 1996 Feb;7(2):245–260. doi: 10.1091/mbc.7.2.245. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pelham H. R. The Florey Lecture, 1992. The secretion of proteins by cells. Proc Biol Sci. 1992 Oct 22;250(1327):1–10. doi: 10.1098/rspb.1992.0123. [DOI] [PubMed] [Google Scholar]
- Schelling D., Leader D. P., Zammit V. A., Cohen P. Distinct type-1 protein phosphatases are associated with hepatic glycogen and microsomes. Biochim Biophys Acta. 1988 Nov 18;972(2):221–231. doi: 10.1016/0167-4889(88)90120-6. [DOI] [PubMed] [Google Scholar]
- Stark M. J. Yeast protein serine/threonine phosphatases: multiple roles and diverse regulation. Yeast. 1996 Dec;12(16):1647–1675. doi: 10.1002/(SICI)1097-0061(199612)12:16%3C1647::AID-YEA71%3E3.0.CO;2-Q. [DOI] [PubMed] [Google Scholar]
- Strålfors P., Hiraga A., Cohen P. The protein phosphatases involved in cellular regulation. Purification and characterisation of the glycogen-bound form of protein phosphatase-1 from rabbit skeletal muscle. Eur J Biochem. 1985 Jun 3;149(2):295–303. doi: 10.1111/j.1432-1033.1985.tb08926.x. [DOI] [PubMed] [Google Scholar]
- Tang P. M., Bondor J. A., Swiderek K. M., DePaoli-Roach A. A. Molecular cloning and expression of the regulatory (RG1) subunit of the glycogen-associated protein phosphatase. J Biol Chem. 1991 Aug 25;266(24):15782–15789. [PubMed] [Google Scholar]
- Tu J., Carlson M. REG1 binds to protein phosphatase type 1 and regulates glucose repression in Saccharomyces cerevisiae. EMBO J. 1995 Dec 1;14(23):5939–5946. doi: 10.1002/j.1460-2075.1995.tb00282.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tu J., Song W., Carlson M. Protein phosphatase type 1 interacts with proteins required for meiosis and other cellular processes in Saccharomyces cerevisiae. Mol Cell Biol. 1996 Aug;16(8):4199–4206. doi: 10.1128/mcb.16.8.4199. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van Eynde A., Beullens M., Stalmans W., Bollen M. Full activation of a nuclear species of protein phosphatase-1 by phosphorylation with protein kinase A and casein kinase-2. Biochem J. 1994 Feb 1;297(Pt 3):447–449. doi: 10.1042/bj2970447. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van Eynde A., Wera S., Beullens M., Torrekens S., Van Leuven F., Stalmans W., Bollen M. Molecular cloning of NIPP-1, a nuclear inhibitor of protein phosphatase-1, reveals homology with polypeptides involved in RNA processing. J Biol Chem. 1995 Nov 24;270(47):28068–28074. doi: 10.1074/jbc.270.47.28068. [DOI] [PubMed] [Google Scholar]
- Wera S., Hemmings B. A. Serine/threonine protein phosphatases. Biochem J. 1995 Oct 1;311(Pt 1):17–29. doi: 10.1042/bj3110017. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Williams K. R., Hemmings H. C., Jr, LoPresti M. B., Konigsberg W. H., Greengard P. DARPP-32, a dopamine- and cyclic AMP-regulated neuronal phosphoprotein. Primary structure and homology with protein phosphatase inhibitor-1. J Biol Chem. 1986 Feb 5;261(4):1890–1903. [PubMed] [Google Scholar]
- Zhou M. M., Ravichandran K. S., Olejniczak E. F., Petros A. M., Meadows R. P., Sattler M., Harlan J. E., Wade W. S., Burakoff S. J., Fesik S. W. Structure and ligand recognition of the phosphotyrosine binding domain of Shc. Nature. 1995 Dec 7;378(6557):584–592. doi: 10.1038/378584a0. [DOI] [PubMed] [Google Scholar]
- Zhu L., Harlow E., Dynlacht B. D. p107 uses a p21CIP1-related domain to bind cyclin/cdk2 and regulate interactions with E2F. Genes Dev. 1995 Jul 15;9(14):1740–1752. doi: 10.1101/gad.9.14.1740. [DOI] [PubMed] [Google Scholar]