Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1997 May 1;16(9):2262–2270. doi: 10.1093/emboj/16.9.2262

An early and massive wave of germinal cell apoptosis is required for the development of functional spermatogenesis.

I Rodriguez 1, C Ody 1, K Araki 1, I Garcia 1, P Vassalli 1
PMCID: PMC1169828  PMID: 9171341

Abstract

Transgenic mice expressing high levels of the BclxL or Bcl2 proteins in the male germinal cells show a highly abnormal adult spermatogenesis accompanied by sterility. This appears to result from the prevention of an early and massive wave of apoptosis in the testis, which occurs among germinal cells during the first round of spermatogenesis. In contrast, sporadic apoptosis among spermatogonia, which occurs in normal adult testis, is not prevented in adult transgenic mice. The physiological early apoptotic wave in the testis is coincident, in timing and localization, with a temporary high expression of the apoptosis-promoting protein Bax, which disappears at sexual maturity. The critical role played by the intracellular balance, probably hormonally controlled, of the BclxL and Bax proteins (Bcl2 is apparently not expressed in normal mouse testis) in this early apoptotic wave is shown by the occurrence of a comparable testicular syndrome in mice defective in the bax gene. The apoptotic wave appears necessary for normal mature spermatogenesis to develop, probably because it maintains a critical cell number ratio between some germinal cell stages and Sertoli cells, whose normal functions and differentiation involve an elaborate network of communication.

Full Text

The Full Text of this article is available as a PDF (437.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allan D. J., Harmon B. V., Roberts S. A. Spermatogonial apoptosis has three morphologically recognizable phases and shows no circadian rhythm during normal spermatogenesis in the rat. Cell Prolif. 1992 May;25(3):241–250. doi: 10.1111/j.1365-2184.1992.tb01399.x. [DOI] [PubMed] [Google Scholar]
  2. Billig H., Furuta I., Hsueh A. J. Estrogens inhibit and androgens enhance ovarian granulosa cell apoptosis. Endocrinology. 1993 Nov;133(5):2204–2212. doi: 10.1210/endo.133.5.8404672. [DOI] [PubMed] [Google Scholar]
  3. Billig H., Furuta I., Rivier C., Tapanainen J., Parvinen M., Hsueh A. J. Apoptosis in testis germ cells: developmental changes in gonadotropin dependence and localization to selective tubule stages. Endocrinology. 1995 Jan;136(1):5–12. doi: 10.1210/endo.136.1.7828558. [DOI] [PubMed] [Google Scholar]
  4. Bremner W. J., Millar M. R., Sharpe R. M., Saunders P. T. Immunohistochemical localization of androgen receptors in the rat testis: evidence for stage-dependent expression and regulation by androgens. Endocrinology. 1994 Sep;135(3):1227–1234. doi: 10.1210/endo.135.3.8070367. [DOI] [PubMed] [Google Scholar]
  5. Farrow S. N., White J. H., Martinou I., Raven T., Pun K. T., Grinham C. J., Martinou J. C., Brown R. Cloning of a bcl-2 homologue by interaction with adenovirus E1B 19K. Nature. 1995 Apr 20;374(6524):731–733. doi: 10.1038/374731a0. [DOI] [PubMed] [Google Scholar]
  6. Furuchi T., Masuko K., Nishimune Y., Obinata M., Matsui Y. Inhibition of testicular germ cell apoptosis and differentiation in mice misexpressing Bcl-2 in spermatogonia. Development. 1996 Jun;122(6):1703–1709. doi: 10.1242/dev.122.6.1703. [DOI] [PubMed] [Google Scholar]
  7. Gavrieli Y., Sherman Y., Ben-Sasson S. A. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol. 1992 Nov;119(3):493–501. doi: 10.1083/jcb.119.3.493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Jégou B. The Sertoli-germ cell communication network in mammals. Int Rev Cytol. 1993;147:25–96. [PubMed] [Google Scholar]
  9. Knudson C. M., Tung K. S., Tourtellotte W. G., Brown G. A., Korsmeyer S. J. Bax-deficient mice with lymphoid hyperplasia and male germ cell death. Science. 1995 Oct 6;270(5233):96–99. doi: 10.1126/science.270.5233.96. [DOI] [PubMed] [Google Scholar]
  10. Korsmeyer S. J. Regulators of cell death. Trends Genet. 1995 Mar;11(3):101–105. doi: 10.1016/S0168-9525(00)89010-1. [DOI] [PubMed] [Google Scholar]
  11. Krajewski S., Krajewska M., Shabaik A., Miyashita T., Wang H. G., Reed J. C. Immunohistochemical determination of in vivo distribution of Bax, a dominant inhibitor of Bcl-2. Am J Pathol. 1994 Dec;145(6):1323–1336. [PMC free article] [PubMed] [Google Scholar]
  12. Krajewski S., Krajewska M., Shabaik A., Wang H. G., Irie S., Fong L., Reed J. C. Immunohistochemical analysis of in vivo patterns of Bcl-X expression. Cancer Res. 1994 Nov 1;54(21):5501–5507. [PubMed] [Google Scholar]
  13. Martinou J. C., Dubois-Dauphin M., Staple J. K., Rodriguez I., Frankowski H., Missotten M., Albertini P., Talabot D., Catsicas S., Pietra C. Overexpression of BCL-2 in transgenic mice protects neurons from naturally occurring cell death and experimental ischemia. Neuron. 1994 Oct;13(4):1017–1030. doi: 10.1016/0896-6273(94)90266-6. [DOI] [PubMed] [Google Scholar]
  14. Miyashita T., Krajewski S., Krajewska M., Wang H. G., Lin H. K., Liebermann D. A., Hoffman B., Reed J. C. Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene. 1994 Jun;9(6):1799–1805. [PubMed] [Google Scholar]
  15. Miyashita T., Reed J. C. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell. 1995 Jan 27;80(2):293–299. doi: 10.1016/0092-8674(95)90412-3. [DOI] [PubMed] [Google Scholar]
  16. Rodriguez I., Matsuura K., Khatib K., Reed J. C., Nagata S., Vassalli P. A bcl-2 transgene expressed in hepatocytes protects mice from fulminant liver destruction but not from rapid death induced by anti-Fas antibody injection. J Exp Med. 1996 Mar 1;183(3):1031–1036. doi: 10.1084/jem.183.3.1031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Selvakumaran M., Lin H. K., Miyashita T., Wang H. G., Krajewski S., Reed J. C., Hoffman B., Liebermann D. Immediate early up-regulation of bax expression by p53 but not TGF beta 1: a paradigm for distinct apoptotic pathways. Oncogene. 1994 Jun;9(6):1791–1798. [PubMed] [Google Scholar]
  18. Surh C. D., Sprent J. T-cell apoptosis detected in situ during positive and negative selection in the thymus. Nature. 1994 Nov 3;372(6501):100–103. doi: 10.1038/372100a0. [DOI] [PubMed] [Google Scholar]
  19. Tapanainen J. S., Tilly J. L., Vihko K. K., Hsueh A. J. Hormonal control of apoptotic cell death in the testis: gonadotropins and androgens as testicular cell survival factors. Mol Endocrinol. 1993 May;7(5):643–650. doi: 10.1210/mend.7.5.8316250. [DOI] [PubMed] [Google Scholar]
  20. Tilly J. L., Tilly K. I., Kenton M. L., Johnson A. L. Expression of members of the bcl-2 gene family in the immature rat ovary: equine chorionic gonadotropin-mediated inhibition of granulosa cell apoptosis is associated with decreased bax and constitutive bcl-2 and bcl-xlong messenger ribonucleic acid levels. Endocrinology. 1995 Jan;136(1):232–241. doi: 10.1210/endo.136.1.7828536. [DOI] [PubMed] [Google Scholar]
  21. Yang E., Zha J., Jockel J., Boise L. H., Thompson C. B., Korsmeyer S. J. Bad, a heterodimeric partner for Bcl-XL and Bcl-2, displaces Bax and promotes cell death. Cell. 1995 Jan 27;80(2):285–291. doi: 10.1016/0092-8674(95)90411-5. [DOI] [PubMed] [Google Scholar]
  22. Yomogida K., Ohtani H., Harigae H., Ito E., Nishimune Y., Engel J. D., Yamamoto M. Developmental stage- and spermatogenic cycle-specific expression of transcription factor GATA-1 in mouse Sertoli cells. Development. 1994 Jul;120(7):1759–1766. doi: 10.1242/dev.120.7.1759. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES