Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1997 May 1;16(9):2397–2407. doi: 10.1093/emboj/16.9.2397

The GTPase Rho has a critical regulatory role in thymus development.

S W Henning 1, R Galandrini 1, A Hall 1, D A Cantrell 1
PMCID: PMC1169840  PMID: 9171353

Abstract

The present study employs a genetic approach to explore the role of Rho GTPases in murine thymic development. Inactivation of Rho function in the thymus was achieved by thymic targeting of a transgene encoding C3 transferase from Clostridium botulinum which selectively ADP-ribosylates Rho within its effector domain and thereby abolishes its biological function. Thymi lacking functional Rho isolated from C3 transgenic mice were strikingly smaller and showed a marked (90%) decrease in cellularity compared with their normal litter mates. We also observed a similar decrease in levels of peripheral T cells in C3 transgenic mice. Analysis of the maturation status of thymocytes indicated that differentiation of progenitor cells to mature T cells can occur in the absence of Rho function, and both positive and negative selection of T cells appear to be intact. However, transgenic mice that lack Rho function in the thymus show maturational, proliferative and cell survival defects during T-cell development that severely impair the generation of normal numbers of thymocytes and mature peripheral T cells. The present study thus identifies a role for Rho-dependent signalling pathways in thymocyte development. The data show that the function of Rho GTPases is critical for the proliferative expansion of thymocytes. This defines a selective role for the GTPase Rho in early thymic development as a critical integrator of proliferation and cell survival signals.

Full Text

The Full Text of this article is available as a PDF (872.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aktories K., Just I. Monoglucosylation of low-molecular-mass GTP-binding Rho proteins by clostridial cytotoxins. Trends Cell Biol. 1995 Dec;5(12):441–443. doi: 10.1016/s0962-8924(00)89107-2. [DOI] [PubMed] [Google Scholar]
  2. Aktories K., Mohr C., Koch G. Clostridium botulinum C3 ADP-ribosyltransferase. Curr Top Microbiol Immunol. 1992;175:115–131. doi: 10.1007/978-3-642-76966-5_6. [DOI] [PubMed] [Google Scholar]
  3. Alberola-Ila J., Forbush K. A., Seger R., Krebs E. G., Perlmutter R. M. Selective requirement for MAP kinase activation in thymocyte differentiation. Nature. 1995 Feb 16;373(6515):620–623. doi: 10.1038/373620a0. [DOI] [PubMed] [Google Scholar]
  4. Alberola-Ila J., Hogquist K. A., Swan K. A., Bevan M. J., Perlmutter R. M. Positive and negative selection invoke distinct signaling pathways. J Exp Med. 1996 Jul 1;184(1):9–18. doi: 10.1084/jem.184.1.9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Amano M., Mukai H., Ono Y., Chihara K., Matsui T., Hamajima Y., Okawa K., Iwamatsu A., Kaibuchi K. Identification of a putative target for Rho as the serine-threonine kinase protein kinase N. Science. 1996 Feb 2;271(5249):648–650. doi: 10.1126/science.271.5249.648. [DOI] [PubMed] [Google Scholar]
  6. Anderson S. J., Levin S. D., Perlmutter R. M. Involvement of the protein tyrosine kinase p56lck in T cell signaling and thymocyte development. Adv Immunol. 1994;56:151–178. doi: 10.1016/s0065-2776(08)60451-4. [DOI] [PubMed] [Google Scholar]
  7. Anderson S. J., Levin S. D., Perlmutter R. M. Protein tyrosine kinase p56lck controls allelic exclusion of T-cell receptor beta-chain genes. Nature. 1993 Oct 7;365(6446):552–554. doi: 10.1038/365552a0. [DOI] [PubMed] [Google Scholar]
  8. Cao X., Shores E. W., Hu-Li J., Anver M. R., Kelsall B. L., Russell S. M., Drago J., Noguchi M., Grinberg A., Bloom E. T. Defective lymphoid development in mice lacking expression of the common cytokine receptor gamma chain. Immunity. 1995 Mar;2(3):223–238. doi: 10.1016/1074-7613(95)90047-0. [DOI] [PubMed] [Google Scholar]
  9. Chaffin K. E., Beals C. R., Wilkie T. M., Forbush K. A., Simon M. I., Perlmutter R. M. Dissection of thymocyte signaling pathways by in vivo expression of pertussis toxin ADP-ribosyltransferase. EMBO J. 1990 Dec;9(12):3821–3829. doi: 10.1002/j.1460-2075.1990.tb07600.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Crespo P., Bustelo X. R., Aaronson D. S., Coso O. A., Lopez-Barahona M., Barbacid M., Gutkind J. S. Rac-1 dependent stimulation of the JNK/SAPK signaling pathway by Vav. Oncogene. 1996 Aug 1;13(3):455–460. [PubMed] [Google Scholar]
  11. Crompton T., Moore M., MacDonald H. R., Malissen B. Double-negative thymocyte subsets in CD3 zeta chain-deficient mice: absence of HSA+CD44-CD25- cells. Eur J Immunol. 1994 Aug;24(8):1903–1907. doi: 10.1002/eji.1830240828. [DOI] [PubMed] [Google Scholar]
  12. Fehling H. J., Krotkova A., Saint-Ruf C., von Boehmer H. Crucial role of the pre-T-cell receptor alpha gene in development of alpha beta but not gamma delta T cells. Nature. 1995 Jun 29;375(6534):795–798. doi: 10.1038/375795a0. [DOI] [PubMed] [Google Scholar]
  13. Fischer K. D., Zmuldzinas A., Gardner S., Barbacid M., Bernstein A., Guidos C. Defective T-cell receptor signalling and positive selection of Vav-deficient CD4+ CD8+ thymocytes. Nature. 1995 Mar 30;374(6521):474–477. doi: 10.1038/374474a0. [DOI] [PubMed] [Google Scholar]
  14. Godfrey D. I., Zlotnik A., Suda T. Phenotypic and functional characterization of c-kit expression during intrathymic T cell development. J Immunol. 1992 Oct 1;149(7):2281–2285. [PubMed] [Google Scholar]
  15. Groettrup M., Ungewiss K., Azogui O., Palacios R., Owen M. J., Hayday A. C., von Boehmer H. A novel disulfide-linked heterodimer on pre-T cells consists of the T cell receptor beta chain and a 33 kd glycoprotein. Cell. 1993 Oct 22;75(2):283–294. doi: 10.1016/0092-8674(93)80070-u. [DOI] [PubMed] [Google Scholar]
  16. Hill C. S., Wynne J., Treisman R. The Rho family GTPases RhoA, Rac1, and CDC42Hs regulate transcriptional activation by SRF. Cell. 1995 Jun 30;81(7):1159–1170. doi: 10.1016/s0092-8674(05)80020-0. [DOI] [PubMed] [Google Scholar]
  17. Iwabuchi K., Nakayama K., McCoy R. L., Wang F., Nishimura T., Habu S., Murphy K. M., Loh D. Y. Cellular and peptide requirements for in vitro clonal deletion of immature thymocytes. Proc Natl Acad Sci U S A. 1992 Oct 1;89(19):9000–9004. doi: 10.1073/pnas.89.19.9000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kisielow P., Blüthmann H., Staerz U. D., Steinmetz M., von Boehmer H. Tolerance in T-cell-receptor transgenic mice involves deletion of nonmature CD4+8+ thymocytes. Nature. 1988 Jun 23;333(6175):742–746. doi: 10.1038/333742a0. [DOI] [PubMed] [Google Scholar]
  19. Lang P., Guizani L., Vitté-Mony I., Stancou R., Dorseuil O., Gacon G., Bertoglio J. ADP-ribosylation of the ras-related, GTP-binding protein RhoA inhibits lymphocyte-mediated cytotoxicity. J Biol Chem. 1992 Jun 15;267(17):11677–11680. [PubMed] [Google Scholar]
  20. Laudanna C., Campbell J. J., Butcher E. C. Role of Rho in chemoattractant-activated leukocyte adhesion through integrins. Science. 1996 Feb 16;271(5251):981–983. doi: 10.1126/science.271.5251.981. [DOI] [PubMed] [Google Scholar]
  21. Levin S. D., Anderson S. J., Forbush K. A., Perlmutter R. M. A dominant-negative transgene defines a role for p56lck in thymopoiesis. EMBO J. 1993 Apr;12(4):1671–1680. doi: 10.1002/j.1460-2075.1993.tb05812.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Liao X. C., Littman D. R. Altered T cell receptor signaling and disrupted T cell development in mice lacking Itk. Immunity. 1995 Dec;3(6):757–769. doi: 10.1016/1074-7613(95)90065-9. [DOI] [PubMed] [Google Scholar]
  23. Negishi I., Motoyama N., Nakayama K., Nakayama K., Senju S., Hatakeyama S., Zhang Q., Chan A. C., Loh D. Y. Essential role for ZAP-70 in both positive and negative selection of thymocytes. Nature. 1995 Aug 3;376(6539):435–438. doi: 10.1038/376435a0. [DOI] [PubMed] [Google Scholar]
  24. Olson M. F., Pasteris N. G., Gorski J. L., Hall A. Faciogenital dysplasia protein (FGD1) and Vav, two related proteins required for normal embryonic development, are upstream regulators of Rho GTPases. Curr Biol. 1996 Dec 1;6(12):1628–1633. doi: 10.1016/s0960-9822(02)70786-0. [DOI] [PubMed] [Google Scholar]
  25. Park S. Y., Saijo K., Takahashi T., Osawa M., Arase H., Hirayama N., Miyake K., Nakauchi H., Shirasawa T., Saito T. Developmental defects of lymphoid cells in Jak3 kinase-deficient mice. Immunity. 1995 Dec;3(6):771–782. doi: 10.1016/1074-7613(95)90066-7. [DOI] [PubMed] [Google Scholar]
  26. Pearse M., Wu L., Egerton M., Wilson A., Shortman K., Scollay R. A murine early thymocyte developmental sequence is marked by transient expression of the interleukin 2 receptor. Proc Natl Acad Sci U S A. 1989 Mar;86(5):1614–1618. doi: 10.1073/pnas.86.5.1614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Peschon J. J., Morrissey P. J., Grabstein K. H., Ramsdell F. J., Maraskovsky E., Gliniak B. C., Park L. S., Ziegler S. F., Williams D. E., Ware C. B. Early lymphocyte expansion is severely impaired in interleukin 7 receptor-deficient mice. J Exp Med. 1994 Nov 1;180(5):1955–1960. doi: 10.1084/jem.180.5.1955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Swat W., Ignatowicz L., von Boehmer H., Kisielow P. Clonal deletion of immature CD4+8+ thymocytes in suspension culture by extrathymic antigen-presenting cells. Nature. 1991 May 9;351(6322):150–153. doi: 10.1038/351150a0. [DOI] [PubMed] [Google Scholar]
  29. Swat W., Shinkai Y., Cheng H. L., Davidson L., Alt F. W. Activated Ras signals differentiation and expansion of CD4+8+ thymocytes. Proc Natl Acad Sci U S A. 1996 May 14;93(10):4683–4687. doi: 10.1073/pnas.93.10.4683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Tarakhovsky A., Turner M., Schaal S., Mee P. J., Duddy L. P., Rajewsky K., Tybulewicz V. L. Defective antigen receptor-mediated proliferation of B and T cells in the absence of Vav. Nature. 1995 Mar 30;374(6521):467–470. doi: 10.1038/374467a0. [DOI] [PubMed] [Google Scholar]
  31. Thomis D. C., Gurniak C. B., Tivol E., Sharpe A. H., Berg L. J. Defects in B lymphocyte maturation and T lymphocyte activation in mice lacking Jak3. Science. 1995 Nov 3;270(5237):794–797. doi: 10.1126/science.270.5237.794. [DOI] [PubMed] [Google Scholar]
  32. Watanabe G., Saito Y., Madaule P., Ishizaki T., Fujisawa K., Morii N., Mukai H., Ono Y., Kakizuka A., Narumiya S. Protein kinase N (PKN) and PKN-related protein rhophilin as targets of small GTPase Rho. Science. 1996 Feb 2;271(5249):645–648. doi: 10.1126/science.271.5249.645. [DOI] [PubMed] [Google Scholar]
  33. Wu J., Motto D. G., Koretzky G. A., Weiss A. Vav and SLP-76 interact and functionally cooperate in IL-2 gene activation. Immunity. 1996 Jun;4(6):593–602. doi: 10.1016/s1074-7613(00)80485-9. [DOI] [PubMed] [Google Scholar]
  34. Zeng Y. X., Takahashi H., Shibata M., Hirokawa K. JAK3 Janus kinase is involved in interleukin 7 signal pathway. FEBS Lett. 1994 Oct 24;353(3):289–293. doi: 10.1016/0014-5793(94)01065-x. [DOI] [PubMed] [Google Scholar]
  35. von Freeden-Jeffry U., Vieira P., Lucian L. A., McNeil T., Burdach S. E., Murray R. Lymphopenia in interleukin (IL)-7 gene-deleted mice identifies IL-7 as a nonredundant cytokine. J Exp Med. 1995 Apr 1;181(4):1519–1526. doi: 10.1084/jem.181.4.1519. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES