Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1997 May 1;16(9):2519–2527. doi: 10.1093/emboj/16.9.2519

Protein-primed DNA replication: a transition between two modes of priming by a unique DNA polymerase.

J Mendez 1, L Blanco 1, M Salas 1
PMCID: PMC1169851  PMID: 9171364

Abstract

Phage phi29 from Bacillus subtilis is a paradigm of the protein-primed replication mechanism, in which a single-subunit DNA polymerase is involved in both the specific protein-primed initiation step and normal DNA elongation. To start phi29 DNA replication, the viral DNA polymerase must interact with a free molecule of the viral terminal protein (TP), to prime DNA synthesis once at each phi29 DNA end. The results shown in this paper demonstrate that the DNA polymerase-primer TP heterodimer is not dissociated immediately after initiation. On the contrary, there is a transition stage in which the DNA polymerase synthesizes a five nucleotide-long DNA molecule while complexed with the primer TP, undergoes some structural change during replication of nucleotides 6-9, and finally dissociates from the primer protein when nucleotide 10 is inserted onto the nascent DNA chain. This behaviour probably reflects the polymerase requirement for a DNA primer of a minimum length to efficiently catalyze DNA elongation. The significance of such a limiting transition stage is supported by the finding of abortive replication products consisting of the primer TP linked up to eight nucleotides, detected during in vitro replication of phi29 TP-DNA particularly under conditions that decrease the strand-displacement capacity of phi29 DNA polymerase.

Full Text

The Full Text of this article is available as a PDF (243.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barthelemy I., Salas M., Mellado R. P. In vivo transcription of bacteriophage phi 29 DNA: transcription initiation sites. J Virol. 1986 Dec;60(3):874–879. doi: 10.1128/jvi.60.3.874-879.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Blanco L., Bernad A., Esteban J. A., Salas M. DNA-independent deoxynucleotidylation of the phi 29 terminal protein by the phi 29 DNA polymerase. J Biol Chem. 1992 Jan 15;267(2):1225–1230. [PubMed] [Google Scholar]
  3. Blanco L., Bernad A., Salas M. Transition from initiation to elongation in protein-primed phi 29 DNA replication: salt-dependent stimulation by the viral protein p6. J Virol. 1988 Nov;62(11):4167–4172. doi: 10.1128/jvi.62.11.4167-4172.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Blanco L., Gutiérrez J., Lázaro J. M., Bernad A., Salas M. Replication of phage phi 29 DNA in vitro: role of the viral protein p6 in initiation and elongation. Nucleic Acids Res. 1986 Jun 25;14(12):4923–4937. doi: 10.1093/nar/14.12.4923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Blanco L., Prieto I., Gutiérrez J., Bernad A., Lázaro J. M., Hermoso J. M., Salas M. Effect of NH4+ ions on phi 29 DNA-protein p3 replication: formation of a complex between the terminal protein and the DNA polymerase. J Virol. 1987 Dec;61(12):3983–3991. doi: 10.1128/jvi.61.12.3983-3991.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Blanco L., Salas M. Relating structure to function in phi29 DNA polymerase. J Biol Chem. 1996 Apr 12;271(15):8509–8512. doi: 10.1074/jbc.271.15.8509. [DOI] [PubMed] [Google Scholar]
  7. Caldentey J., Blanco L., Savilahti H., Bamford D. H., Salas M. In vitro replication of bacteriophage PRD1 DNA. Metal activation of protein-primed initiation and DNA elongation. Nucleic Acids Res. 1992 Aug 11;20(15):3971–3976. doi: 10.1093/nar/20.15.3971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Eick D., Wedel A., Heumann H. From initiation to elongation: comparison of transcription by prokaryotic and eukaryotic RNA polymerases. Trends Genet. 1994 Aug;10(8):292–296. doi: 10.1016/0168-9525(90)90013-v. [DOI] [PubMed] [Google Scholar]
  9. Esteban J. A., Bernad A., Salas M., Blanco L. Metal activation of synthetic and degradative activities of phi 29 DNA polymerase, a model enzyme for protein-primed DNA replication. Biochemistry. 1992 Jan 21;31(2):350–359. doi: 10.1021/bi00117a006. [DOI] [PubMed] [Google Scholar]
  10. Esteban J. A., Salas M., Blanco L. Fidelity of phi 29 DNA polymerase. Comparison between protein-primed initiation and DNA polymerization. J Biol Chem. 1993 Feb 5;268(4):2719–2726. [PubMed] [Google Scholar]
  11. Esteban J. A., Soengas M. S., Salas M., Blanco L. 3'-->5' exonuclease active site of phi 29 DNA polymerase. Evidence favoring a metal ion-assisted reaction mechanism. J Biol Chem. 1994 Dec 16;269(50):31946–31954. [PubMed] [Google Scholar]
  12. Griep M. A. Primase structure and function. Indian J Biochem Biophys. 1995 Aug;32(4):171–178. [PubMed] [Google Scholar]
  13. Illana B., Blanco L., Salas M. Functional characterization of the genes coding for the terminal protein and DNA polymerase from bacteriophage GA-1. Evidence for a sliding-back mechanism during protein-primed GA-1 DNA replication. J Mol Biol. 1996 Dec 6;264(3):453–464. doi: 10.1006/jmbi.1996.0653. [DOI] [PubMed] [Google Scholar]
  14. Joyce C. M., Steitz T. A. Function and structure relationships in DNA polymerases. Annu Rev Biochem. 1994;63:777–822. doi: 10.1146/annurev.bi.63.070194.004021. [DOI] [PubMed] [Google Scholar]
  15. King A. J., van der Vliet P. C. A precursor terminal protein-trinucleotide intermediate during initiation of adenovirus DNA replication: regeneration of molecular ends in vitro by a jumping back mechanism. EMBO J. 1994 Dec 1;13(23):5786–5792. doi: 10.1002/j.1460-2075.1994.tb06917.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lázaro J. M., Blanco L., Salas M. Purification of bacteriophage phi 29 DNA polymerase. Methods Enzymol. 1995;262:42–49. doi: 10.1016/0076-6879(95)62007-9. [DOI] [PubMed] [Google Scholar]
  17. Martín A. C., Blanco L., García P., Salas M., Méndez J. In vitro protein-primed initiation of pneumococcal phage Cp-1 DNA replication occurs at the third 3' nucleotide of the linear template: a stepwise sliding-back mechanism. J Mol Biol. 1996 Jul 19;260(3):369–377. doi: 10.1006/jmbi.1996.0407. [DOI] [PubMed] [Google Scholar]
  18. Matsumoto K., Saito T., Kim C. I., Ando T., Hirokawa H. Bacteriophage phi 29 DNA replication in vitro: participation of the terminal protein and the gene 2 product in elongation. Mol Gen Genet. 1984;196(3):381–386. doi: 10.1007/BF00436183. [DOI] [PubMed] [Google Scholar]
  19. Salas M. Protein-priming of DNA replication. Annu Rev Biochem. 1991;60:39–71. doi: 10.1146/annurev.bi.60.070191.000351. [DOI] [PubMed] [Google Scholar]
  20. Serrano M., Salas M., Hermoso J. M. A novel nucleoprotein complex at a replication origin. Science. 1990 May 25;248(4958):1012–1016. doi: 10.1126/science.2111580. [DOI] [PubMed] [Google Scholar]
  21. Shi Y. B., Gamper H., Hearst J. E. Interaction of T7 RNA polymerase with DNA in an elongation complex arrested at a specific psoralen adduct site. J Biol Chem. 1988 Jan 5;263(1):527–534. [PubMed] [Google Scholar]
  22. Soengas M. S., Esteban J. A., Lázaro J. M., Bernad A., Blasco M. A., Salas M., Blanco L. Site-directed mutagenesis at the Exo III motif of phi 29 DNA polymerase; overlapping structural domains for the 3'-5' exonuclease and strand-displacement activities. EMBO J. 1992 Nov;11(11):4227–4237. doi: 10.1002/j.1460-2075.1992.tb05517.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sousa R., Patra D., Lafer E. M. Model for the mechanism of bacteriophage T7 RNAP transcription initiation and termination. J Mol Biol. 1992 Mar 20;224(2):319–334. doi: 10.1016/0022-2836(92)90997-x. [DOI] [PubMed] [Google Scholar]
  24. Truniger V., Lázaro J. M., Salas M., Blanco L. A DNA binding motif coordinating synthesis and degradation in proofreading DNA polymerases. EMBO J. 1996 Jul 1;15(13):3430–3441. [PMC free article] [PubMed] [Google Scholar]
  25. de Vega M., Lazaro J. M., Salas M., Blanco L. Primer-terminus stabilization at the 3'-5' exonuclease active site of phi29 DNA polymerase. Involvement of two amino acid residues highly conserved in proofreading DNA polymerases. EMBO J. 1996 Mar 1;15(5):1182–1192. [PMC free article] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES