Abstract
Phage phi29 from Bacillus subtilis is a paradigm of the protein-primed replication mechanism, in which a single-subunit DNA polymerase is involved in both the specific protein-primed initiation step and normal DNA elongation. To start phi29 DNA replication, the viral DNA polymerase must interact with a free molecule of the viral terminal protein (TP), to prime DNA synthesis once at each phi29 DNA end. The results shown in this paper demonstrate that the DNA polymerase-primer TP heterodimer is not dissociated immediately after initiation. On the contrary, there is a transition stage in which the DNA polymerase synthesizes a five nucleotide-long DNA molecule while complexed with the primer TP, undergoes some structural change during replication of nucleotides 6-9, and finally dissociates from the primer protein when nucleotide 10 is inserted onto the nascent DNA chain. This behaviour probably reflects the polymerase requirement for a DNA primer of a minimum length to efficiently catalyze DNA elongation. The significance of such a limiting transition stage is supported by the finding of abortive replication products consisting of the primer TP linked up to eight nucleotides, detected during in vitro replication of phi29 TP-DNA particularly under conditions that decrease the strand-displacement capacity of phi29 DNA polymerase.
Full Text
The Full Text of this article is available as a PDF (243.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barthelemy I., Salas M., Mellado R. P. In vivo transcription of bacteriophage phi 29 DNA: transcription initiation sites. J Virol. 1986 Dec;60(3):874–879. doi: 10.1128/jvi.60.3.874-879.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blanco L., Bernad A., Esteban J. A., Salas M. DNA-independent deoxynucleotidylation of the phi 29 terminal protein by the phi 29 DNA polymerase. J Biol Chem. 1992 Jan 15;267(2):1225–1230. [PubMed] [Google Scholar]
- Blanco L., Bernad A., Salas M. Transition from initiation to elongation in protein-primed phi 29 DNA replication: salt-dependent stimulation by the viral protein p6. J Virol. 1988 Nov;62(11):4167–4172. doi: 10.1128/jvi.62.11.4167-4172.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blanco L., Gutiérrez J., Lázaro J. M., Bernad A., Salas M. Replication of phage phi 29 DNA in vitro: role of the viral protein p6 in initiation and elongation. Nucleic Acids Res. 1986 Jun 25;14(12):4923–4937. doi: 10.1093/nar/14.12.4923. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blanco L., Prieto I., Gutiérrez J., Bernad A., Lázaro J. M., Hermoso J. M., Salas M. Effect of NH4+ ions on phi 29 DNA-protein p3 replication: formation of a complex between the terminal protein and the DNA polymerase. J Virol. 1987 Dec;61(12):3983–3991. doi: 10.1128/jvi.61.12.3983-3991.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blanco L., Salas M. Relating structure to function in phi29 DNA polymerase. J Biol Chem. 1996 Apr 12;271(15):8509–8512. doi: 10.1074/jbc.271.15.8509. [DOI] [PubMed] [Google Scholar]
- Caldentey J., Blanco L., Savilahti H., Bamford D. H., Salas M. In vitro replication of bacteriophage PRD1 DNA. Metal activation of protein-primed initiation and DNA elongation. Nucleic Acids Res. 1992 Aug 11;20(15):3971–3976. doi: 10.1093/nar/20.15.3971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eick D., Wedel A., Heumann H. From initiation to elongation: comparison of transcription by prokaryotic and eukaryotic RNA polymerases. Trends Genet. 1994 Aug;10(8):292–296. doi: 10.1016/0168-9525(90)90013-v. [DOI] [PubMed] [Google Scholar]
- Esteban J. A., Bernad A., Salas M., Blanco L. Metal activation of synthetic and degradative activities of phi 29 DNA polymerase, a model enzyme for protein-primed DNA replication. Biochemistry. 1992 Jan 21;31(2):350–359. doi: 10.1021/bi00117a006. [DOI] [PubMed] [Google Scholar]
- Esteban J. A., Salas M., Blanco L. Fidelity of phi 29 DNA polymerase. Comparison between protein-primed initiation and DNA polymerization. J Biol Chem. 1993 Feb 5;268(4):2719–2726. [PubMed] [Google Scholar]
- Esteban J. A., Soengas M. S., Salas M., Blanco L. 3'-->5' exonuclease active site of phi 29 DNA polymerase. Evidence favoring a metal ion-assisted reaction mechanism. J Biol Chem. 1994 Dec 16;269(50):31946–31954. [PubMed] [Google Scholar]
- Griep M. A. Primase structure and function. Indian J Biochem Biophys. 1995 Aug;32(4):171–178. [PubMed] [Google Scholar]
- Illana B., Blanco L., Salas M. Functional characterization of the genes coding for the terminal protein and DNA polymerase from bacteriophage GA-1. Evidence for a sliding-back mechanism during protein-primed GA-1 DNA replication. J Mol Biol. 1996 Dec 6;264(3):453–464. doi: 10.1006/jmbi.1996.0653. [DOI] [PubMed] [Google Scholar]
- Joyce C. M., Steitz T. A. Function and structure relationships in DNA polymerases. Annu Rev Biochem. 1994;63:777–822. doi: 10.1146/annurev.bi.63.070194.004021. [DOI] [PubMed] [Google Scholar]
- King A. J., van der Vliet P. C. A precursor terminal protein-trinucleotide intermediate during initiation of adenovirus DNA replication: regeneration of molecular ends in vitro by a jumping back mechanism. EMBO J. 1994 Dec 1;13(23):5786–5792. doi: 10.1002/j.1460-2075.1994.tb06917.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lázaro J. M., Blanco L., Salas M. Purification of bacteriophage phi 29 DNA polymerase. Methods Enzymol. 1995;262:42–49. doi: 10.1016/0076-6879(95)62007-9. [DOI] [PubMed] [Google Scholar]
- Martín A. C., Blanco L., García P., Salas M., Méndez J. In vitro protein-primed initiation of pneumococcal phage Cp-1 DNA replication occurs at the third 3' nucleotide of the linear template: a stepwise sliding-back mechanism. J Mol Biol. 1996 Jul 19;260(3):369–377. doi: 10.1006/jmbi.1996.0407. [DOI] [PubMed] [Google Scholar]
- Matsumoto K., Saito T., Kim C. I., Ando T., Hirokawa H. Bacteriophage phi 29 DNA replication in vitro: participation of the terminal protein and the gene 2 product in elongation. Mol Gen Genet. 1984;196(3):381–386. doi: 10.1007/BF00436183. [DOI] [PubMed] [Google Scholar]
- Salas M. Protein-priming of DNA replication. Annu Rev Biochem. 1991;60:39–71. doi: 10.1146/annurev.bi.60.070191.000351. [DOI] [PubMed] [Google Scholar]
- Serrano M., Salas M., Hermoso J. M. A novel nucleoprotein complex at a replication origin. Science. 1990 May 25;248(4958):1012–1016. doi: 10.1126/science.2111580. [DOI] [PubMed] [Google Scholar]
- Shi Y. B., Gamper H., Hearst J. E. Interaction of T7 RNA polymerase with DNA in an elongation complex arrested at a specific psoralen adduct site. J Biol Chem. 1988 Jan 5;263(1):527–534. [PubMed] [Google Scholar]
- Soengas M. S., Esteban J. A., Lázaro J. M., Bernad A., Blasco M. A., Salas M., Blanco L. Site-directed mutagenesis at the Exo III motif of phi 29 DNA polymerase; overlapping structural domains for the 3'-5' exonuclease and strand-displacement activities. EMBO J. 1992 Nov;11(11):4227–4237. doi: 10.1002/j.1460-2075.1992.tb05517.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sousa R., Patra D., Lafer E. M. Model for the mechanism of bacteriophage T7 RNAP transcription initiation and termination. J Mol Biol. 1992 Mar 20;224(2):319–334. doi: 10.1016/0022-2836(92)90997-x. [DOI] [PubMed] [Google Scholar]
- Truniger V., Lázaro J. M., Salas M., Blanco L. A DNA binding motif coordinating synthesis and degradation in proofreading DNA polymerases. EMBO J. 1996 Jul 1;15(13):3430–3441. [PMC free article] [PubMed] [Google Scholar]
- de Vega M., Lazaro J. M., Salas M., Blanco L. Primer-terminus stabilization at the 3'-5' exonuclease active site of phi29 DNA polymerase. Involvement of two amino acid residues highly conserved in proofreading DNA polymerases. EMBO J. 1996 Mar 1;15(5):1182–1192. [PMC free article] [PubMed] [Google Scholar]