Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1997 May 15;16(10):2590–2598. doi: 10.1093/emboj/16.10.2590

Disruption of the trypanothione reductase gene of Leishmania decreases its ability to survive oxidative stress in macrophages.

C Dumas 1, M Ouellette 1, J Tovar 1, M L Cunningham 1, A H Fairlamb 1, S Tamar 1, M Olivier 1, B Papadopoulou 1
PMCID: PMC1169870  PMID: 9184206

Abstract

Parasitic protozoa belonging to the order Kinetoplastida contain trypanothione as their major thiol. Trypanothione reductase (TR), the enzyme responsible for maintaining trypanothione in its reduced form, is thought to be central to the redox defence systems of trypanosomatids. To investigate further the physiological role of TR in Leishmania, we attempted to create TR-knockout mutants by gene disruption in L. donovani and L. major strains using the selectable markers neomycin and hygromycin phosphotransferases. TR is likely to be an important gene for parasite survival since all our attempts to obtain a TR null mutant in L. donovani failed. Instead, we obtained mutants with a partial trisomy for the TR locus where, despite the successful disruption of two TR alleles by gene targeting, a third TR copy was generated as a result of genomic rearrangements involving the translocation of a TR-containing region to a larger chromosome. Mutants of L. donovani and L. major possessing only one wild-type TR allele express less TR mRNA and have lower TR activity compared with wild-type cells carrying two copies of the TR gene. Significantly, these mutants show attenuated infectivity with a markedly decreased capacity to survive intracellularly within macrophages, provided that the latter are producing reactive oxygen intermediates.

Full Text

The Full Text of this article is available as a PDF (323.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bello A. R., Nare B., Freedman D., Hardy L., Beverley S. M. PTR1: a reductase mediating salvage of oxidized pteridines and methotrexate resistance in the protozoan parasite Leishmania major. Proc Natl Acad Sci U S A. 1994 Nov 22;91(24):11442–11446. doi: 10.1073/pnas.91.24.11442. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bernards A., Van der Ploeg L. H., Frasch A. C., Borst P., Boothroyd J. C., Coleman S., Cross G. A. Activation of trypanosome surface glycoprotein genes involves a duplication-transposition leading to an altered 3' end. Cell. 1981 Dec;27(3 Pt 2):497–505. doi: 10.1016/0092-8674(81)90391-3. [DOI] [PubMed] [Google Scholar]
  3. Brun R., Schönenberger Cultivation and in vitro cloning or procyclic culture forms of Trypanosoma brucei in a semi-defined medium. Short communication. Acta Trop. 1979 Sep;36(3):289–292. [PubMed] [Google Scholar]
  4. Charest H., Matlashewski G. Developmental gene expression in Leishmania donovani: differential cloning and analysis of an amastigote-stage-specific gene. Mol Cell Biol. 1994 May;14(5):2975–2984. doi: 10.1128/mcb.14.5.2975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fairlamb A. H., Blackburn P., Ulrich P., Chait B. T., Cerami A. Trypanothione: a novel bis(glutathionyl)spermidine cofactor for glutathione reductase in trypanosomatids. Science. 1985 Mar 22;227(4693):1485–1487. doi: 10.1126/science.3883489. [DOI] [PubMed] [Google Scholar]
  6. Fairlamb A. H., Cerami A. Metabolism and functions of trypanothione in the Kinetoplastida. Annu Rev Microbiol. 1992;46:695–729. doi: 10.1146/annurev.mi.46.100192.003403. [DOI] [PubMed] [Google Scholar]
  7. Krauth-Siegel R. L., Enders B., Henderson G. B., Fairlamb A. H., Schirmer R. H. Trypanothione reductase from Trypanosoma cruzi. Purification and characterization of the crystalline enzyme. Eur J Biochem. 1987 Apr 1;164(1):123–128. doi: 10.1111/j.1432-1033.1987.tb11002.x. [DOI] [PubMed] [Google Scholar]
  8. Krauth-Siegel R. L., Schöneck R. Flavoprotein structure and mechanism. 5. Trypanothione reductase and lipoamide dehydrogenase as targets for a structure-based drug design. FASEB J. 1995 Sep;9(12):1138–1146. doi: 10.1096/fasebj.9.12.7672506. [DOI] [PubMed] [Google Scholar]
  9. Mortensen R. M., Conner D. A., Chao S., Geisterfer-Lowrance A. A., Seidman J. G. Production of homozygous mutant ES cells with a single targeting construct. Mol Cell Biol. 1992 May;12(5):2391–2395. doi: 10.1128/mcb.12.5.2391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Mottram J. C., Souza A. E., Hutchison J. E., Carter R., Frame M. J., Coombs G. H. Evidence from disruption of the lmcpb gene array of Leishmania mexicana that cysteine proteinases are virulence factors. Proc Natl Acad Sci U S A. 1996 Jun 11;93(12):6008–6013. doi: 10.1073/pnas.93.12.6008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Mukhopadhyay R., Dey S., Xu N., Gage D., Lightbody J., Ouellette M., Rosen B. P. Trypanothione overproduction and resistance to antimonials and arsenicals in Leishmania. Proc Natl Acad Sci U S A. 1996 Sep 17;93(19):10383–10387. doi: 10.1073/pnas.93.19.10383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Muyombwe A., Olivier M., Ouellette M., Papadopoulou B. Selective killing of Leishmania amastigotes expressing a thymidine kinase suicide gene. Exp Parasitol. 1997 Jan;85(1):35–42. doi: 10.1006/expr.1996.4115. [DOI] [PubMed] [Google Scholar]
  13. Olivier M., Baimbridge K. G., Reiner N. E. Stimulus-response coupling in monocytes infected with Leishmania. Attenuation of calcium transients is related to defective agonist-induced accumulation of inositol phosphates. J Immunol. 1992 Feb 15;148(4):1188–1196. [PubMed] [Google Scholar]
  14. Ouellette M., Hettema E., Wüst D., Fase-Fowler F., Borst P. Direct and inverted DNA repeats associated with P-glycoprotein gene amplification in drug resistant Leishmania. EMBO J. 1991 Apr;10(4):1009–1016. doi: 10.1002/j.1460-2075.1991.tb08035.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ouellette M., Papadopoulou B. Mechanisms of drug resistance in Leishmania. Parasitol Today. 1993 May;9(5):150–153. doi: 10.1016/0169-4758(93)90135-3. [DOI] [PubMed] [Google Scholar]
  16. Papadopoulou B., Roy G., Dey S., Rosen B. P., Olivier M., Ouellette M. Gene disruption of the P-glycoprotein related gene pgpa of Leishmania tarentolae. Biochem Biophys Res Commun. 1996 Jul 25;224(3):772–778. doi: 10.1006/bbrc.1996.1098. [DOI] [PubMed] [Google Scholar]
  17. Papadopoulou B., Roy G., Mourad W., Leblanc E., Ouellette M. Changes in folate and pterin metabolism after disruption of the Leishmania H locus short chain dehydrogenase gene. J Biol Chem. 1994 Mar 11;269(10):7310–7315. [PubMed] [Google Scholar]
  18. Shames S. L., Fairlamb A. H., Cerami A., Walsh C. T. Purification and characterization of trypanothione reductase from Crithidia fasciculata, a newly discovered member of the family of disulfide-containing flavoprotein reductases. Biochemistry. 1986 Jun 17;25(12):3519–3526. doi: 10.1021/bi00360a007. [DOI] [PubMed] [Google Scholar]
  19. Taylor M. C., Kelly J. M., Chapman C. J., Fairlamb A. H., Miles M. A. The structure, organization, and expression of the Leishmania donovani gene encoding trypanothione reductase. Mol Biochem Parasitol. 1994 Apr;64(2):293–301. doi: 10.1016/0166-6851(94)00034-4. [DOI] [PubMed] [Google Scholar]
  20. Thomashow L. S., Milhausen M., Rutter W. J., Agabian N. Tubulin genes are tandemly linked and clustered in the genome of trypanosoma brucei. Cell. 1983 Jan;32(1):35–43. doi: 10.1016/0092-8674(83)90494-4. [DOI] [PubMed] [Google Scholar]
  21. Titus R. G., Gueiros-Filho F. J., de Freitas L. A., Beverley S. M. Development of a safe live Leishmania vaccine line by gene replacement. Proc Natl Acad Sci U S A. 1995 Oct 24;92(22):10267–10271. doi: 10.1073/pnas.92.22.10267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Tovar J., Fairlamb A. H. Extrachromosomal, homologous expression of trypanothione reductase and its complementary mRNA in Trypanosoma cruzi. Nucleic Acids Res. 1996 Aug 1;24(15):2942–2949. doi: 10.1093/nar/24.15.2942. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Van der Ploeg L. H., Schwartz D. C., Cantor C. R., Borst P. Antigenic variation in Trypanosoma brucei analyzed by electrophoretic separation of chromosome-sized DNA molecules. Cell. 1984 May;37(1):77–84. doi: 10.1016/0092-8674(84)90302-7. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES