Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1997 May 15;16(10):2703–2716. doi: 10.1093/emboj/16.10.2703

Cell-free synthesis and assembly of connexins into functional gap junction membrane channels.

M M Falk 1, L K Buehler 1, N M Kumar 1, N B Gilula 1
PMCID: PMC1169881  PMID: 9184217

Abstract

Several different gap junction channel subunit isotypes, known as connexins, were synthesized in a cell-free translation system supplemented with microsomal membranes to study the mechanisms involved in gap junction channel assembly. Previous results indicated that the connexins were synthesized as membrane proteins with their relevant transmembrane topology. An integrated biochemical and biophysical analysis indicated that the connexins assembled specifically with other connexin subunits. No interactions were detected between connexin subunits and other co-translated transmembrane proteins. The connexins that were integrated into microsomal vesicles assembled into homo- and hetero-oligomeric structures with hydrodynamic properties of a 9S particle, consistent with the properties reported for hexameric gap junction connexons derived from gap junctions in vivo. Further, cell-free assembled homo-oligomeric connexons composed of beta1 or beta2 connexin were reconstituted into synthetic lipid bilayers. Single channel conductances were recorded from these bilayers that were similar to those measured for these connexons produced in vivo. Thus, this is the first direct evidence that the synthesis and assembly of a gap junction connexon can take place in microsomal membranes. Finally, the cell-free system has been used to investigate the properties of alpha1, beta1 and beta2 connexin to assemble into hetero-oligomers. Evidence has been obtained for a selective interaction between individual connexin isotypes and that a signal determining the potential hetero-oligomeric combinations of connexin isotypes may be located in the N-terminal sequence of the connexins.

Full Text

The Full Text of this article is available as a PDF (607.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cascio M., Kumar N. M., Safarik R., Gilula N. B. Physical characterization of gap junction membrane connexons (hemi-channels) isolated from rat liver. J Biol Chem. 1995 Aug 4;270(31):18643–18648. doi: 10.1074/jbc.270.31.18643. [DOI] [PubMed] [Google Scholar]
  2. Elfgang C., Eckert R., Lichtenberg-Fraté H., Butterweck A., Traub O., Klein R. A., Hülser D. F., Willecke K. Specific permeability and selective formation of gap junction channels in connexin-transfected HeLa cells. J Cell Biol. 1995 May;129(3):805–817. doi: 10.1083/jcb.129.3.805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Falk M. M., Kumar N. M., Gilula N. B. Membrane insertion of gap junction connexins: polytopic channel forming membrane proteins. J Cell Biol. 1994 Oct;127(2):343–355. doi: 10.1083/jcb.127.2.343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Goodenough D. A., Goliger J. A., Paul D. L. Connexins, connexons, and intercellular communication. Annu Rev Biochem. 1996;65:475–502. doi: 10.1146/annurev.bi.65.070196.002355. [DOI] [PubMed] [Google Scholar]
  5. Hurtley S. M., Helenius A. Protein oligomerization in the endoplasmic reticulum. Annu Rev Cell Biol. 1989;5:277–307. doi: 10.1146/annurev.cb.05.110189.001425. [DOI] [PubMed] [Google Scholar]
  6. Jiang J. X., Goodenough D. A. Heteromeric connexons in lens gap junction channels. Proc Natl Acad Sci U S A. 1996 Feb 6;93(3):1287–1291. doi: 10.1073/pnas.93.3.1287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kistler J., Goldie K., Donaldson P., Engel A. Reconstitution of native-type noncrystalline lens fiber gap junctions from isolated hemichannels. J Cell Biol. 1994 Aug;126(4):1047–1058. doi: 10.1083/jcb.126.4.1047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Konig N., Zampighi G. A. Purification of bovine lens cell-to-cell channels composed of connexin44 and connexin50. J Cell Sci. 1995 Sep;108(Pt 9):3091–3098. doi: 10.1242/jcs.108.9.3091. [DOI] [PubMed] [Google Scholar]
  9. Krieg P. A., Melton D. A. Functional messenger RNAs are produced by SP6 in vitro transcription of cloned cDNAs. Nucleic Acids Res. 1984 Sep 25;12(18):7057–7070. doi: 10.1093/nar/12.18.7057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kumar N. M., Friend D. S., Gilula N. B. Synthesis and assembly of human beta 1 gap junctions in BHK cells by DNA transfection with the human beta 1 cDNA. J Cell Sci. 1995 Dec;108(Pt 12):3725–3734. doi: 10.1242/jcs.108.12.3725. [DOI] [PubMed] [Google Scholar]
  11. Kumar N. M., Gilula N. B. The gap junction communication channel. Cell. 1996 Feb 9;84(3):381–388. doi: 10.1016/s0092-8674(00)81282-9. [DOI] [PubMed] [Google Scholar]
  12. Kvist S., Wiman K., Claesson L., Peterson P. A., Dobberstein B. Membrane insertion and oligomeric assembly of HLA-DR histocompatibility antigens. Cell. 1982 May;29(1):61–69. doi: 10.1016/0092-8674(82)90090-3. [DOI] [PubMed] [Google Scholar]
  13. Li M., Jan Y. N., Jan L. Y. Specification of subunit assembly by the hydrophilic amino-terminal domain of the Shaker potassium channel. Science. 1992 Aug 28;257(5074):1225–1230. doi: 10.1126/science.1519059. [DOI] [PubMed] [Google Scholar]
  14. Marquardt T., Hebert D. N., Helenius A. Post-translational folding of influenza hemagglutinin in isolated endoplasmic reticulum-derived microsomes. J Biol Chem. 1993 Sep 15;268(26):19618–19625. [PubMed] [Google Scholar]
  15. Musil L. S., Goodenough D. A. Multisubunit assembly of an integral plasma membrane channel protein, gap junction connexin43, occurs after exit from the ER. Cell. 1993 Sep 24;74(6):1065–1077. doi: 10.1016/0092-8674(93)90728-9. [DOI] [PubMed] [Google Scholar]
  16. Nicholson B., Dermietzel R., Teplow D., Traub O., Willecke K., Revel J. P. Two homologous protein components of hepatic gap junctions. Nature. 1987 Oct 22;329(6141):732–734. doi: 10.1038/329732a0. [DOI] [PubMed] [Google Scholar]
  17. Petersen O. H., Findlay I. Electrophysiology of the pancreas. Physiol Rev. 1987 Jul;67(3):1054–1116. doi: 10.1152/physrev.1987.67.3.1054. [DOI] [PubMed] [Google Scholar]
  18. Rosenberg R. L., East J. E. Cell-free expression of functional Shaker potassium channels. Nature. 1992 Nov 12;360(6400):166–169. doi: 10.1038/360166a0. [DOI] [PubMed] [Google Scholar]
  19. Smith M. M., Schlesinger S., Lindstrom J., Merlie J. P. The effects of inhibiting oligosaccharide trimming by 1-deoxynojirimycin on the nicotinic acetylcholine receptor. J Biol Chem. 1986 Nov 5;261(31):14825–14832. [PubMed] [Google Scholar]
  20. Stauffer K. A., Kumar N. M., Gilula N. B., Unwin N. Isolation and purification of gap junction channels. J Cell Biol. 1991 Oct;115(1):141–150. doi: 10.1083/jcb.115.1.141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Swenson K. I., Jordan J. R., Beyer E. C., Paul D. L. Formation of gap junctions by expression of connexins in Xenopus oocyte pairs. Cell. 1989 Apr 7;57(1):145–155. doi: 10.1016/0092-8674(89)90180-3. [DOI] [PubMed] [Google Scholar]
  22. Tamkun M. M., Fambrough D. M. The (Na+ + K+)-ATPase of chick sensory neurons. Studies on biosynthesis and intracellular transport. J Biol Chem. 1986 Jan 25;261(3):1009–1019. [PubMed] [Google Scholar]
  23. Thomas L., Hartung K., Langosch D., Rehm H., Bamberg E., Franke W. W., Betz H. Identification of synaptophysin as a hexameric channel protein of the synaptic vesicle membrane. Science. 1988 Nov 18;242(4881):1050–1053. doi: 10.1126/science.2461586. [DOI] [PubMed] [Google Scholar]
  24. Unger V. M., Kumar N. M., Gilula N. B., Yeager M. Projection structure of a gap junction membrane channel at 7 A resolution. Nat Struct Biol. 1997 Jan;4(1):39–43. doi: 10.1038/nsb0197-39. [DOI] [PubMed] [Google Scholar]
  25. Unwin P. N., Zampighi G. Structure of the junction between communicating cells. Nature. 1980 Feb 7;283(5747):545–549. doi: 10.1038/283545a0. [DOI] [PubMed] [Google Scholar]
  26. Walter P., Blobel G. Preparation of microsomal membranes for cotranslational protein translocation. Methods Enzymol. 1983;96:84–93. doi: 10.1016/s0076-6879(83)96010-x. [DOI] [PubMed] [Google Scholar]
  27. Werner R., Miller T., Azarnia R., Dahl G. Translation and functional expression of cell-cell channel mRNA in Xenopus oocytes. J Membr Biol. 1985;87(3):253–268. doi: 10.1007/BF01871226. [DOI] [PubMed] [Google Scholar]
  28. Yeager M. Electron microscopic image analysis of cardiac gap junction membrane crystals. Microsc Res Tech. 1995 Aug 1;31(5):452–466. doi: 10.1002/jemt.1070310514. [DOI] [PubMed] [Google Scholar]
  29. Yeager M., Nicholson B. J. Structure of gap junction intercellular channels. Curr Opin Struct Biol. 1996 Apr;6(2):183–192. doi: 10.1016/s0959-440x(96)80073-x. [DOI] [PubMed] [Google Scholar]
  30. Yilla M., Doyle D., Sawyer J. T. Early disulfide bond formation prevents heterotypic aggregation of membrane proteins in a cell-free translation system. J Cell Biol. 1992 Jul;118(2):245–252. doi: 10.1083/jcb.118.2.245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Zhang J. T., Chen M., Foote C. I., Nicholson B. J. Membrane integration of in vitro-translated gap junctional proteins: co- and post-translational mechanisms. Mol Biol Cell. 1996 Mar;7(3):471–482. doi: 10.1091/mbc.7.3.471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. van Koppen C. J., Nathanson N. M. Site-directed mutagenesis of the m2 muscarinic acetylcholine receptor. Analysis of the role of N-glycosylation in receptor expression and function. J Biol Chem. 1990 Dec 5;265(34):20887–20892. [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES