Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1997 May 15;16(10):2945–2954. doi: 10.1093/emboj/16.10.2945

Identification of structural elements critical for inter-domain interactions in a group II self-splicing intron.

J L Jestin 1, E Dème 1, A Jacquier 1
PMCID: PMC1169902  PMID: 9184238

Abstract

Thus far, conventional biophysical techniques, such as NMR spectroscopy or X-ray crystallography, allow the determination, at atomic resolution, of only structural domains of large RNA molecules such as group I introns. Determination of their overall spatial organization thus still relies on modeling. This requires that a relatively high number of tertiary interactions are defined in order to get sufficient topological constraints. Here, we report the use of a modification interference assay to identify structural elements involved in interdomain interactions. We used this technique, in a group II intron, to identify the elements involved in the interactions between domain V and the rest of the molecule. Domain V contains many of the active site components of these ribozymes. In addition to a previously identified 11 nucleotide motif involved in the binding of the domain V terminal GAAA tetraloop, a small number of elements were shown to be essential for domain V binding. In particular, we show that domain III is specifically required for the interaction with sequences encompassing the conserved 2 nucleotide bulge of domain V.

Full Text

The Full Text of this article is available as a PDF (679.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cate J. H., Gooding A. R., Podell E., Zhou K., Golden B. L., Kundrot C. E., Cech T. R., Doudna J. A. Crystal structure of a group I ribozyme domain: principles of RNA packing. Science. 1996 Sep 20;273(5282):1678–1685. doi: 10.1126/science.273.5282.1678. [DOI] [PubMed] [Google Scholar]
  2. Cate J. H., Gooding A. R., Podell E., Zhou K., Golden B. L., Szewczak A. A., Kundrot C. E., Cech T. R., Doudna J. A. RNA tertiary structure mediation by adenosine platforms. Science. 1996 Sep 20;273(5282):1696–1699. doi: 10.1126/science.273.5282.1696. [DOI] [PubMed] [Google Scholar]
  3. Chanfreau G., Jacquier A. An RNA conformational change between the two chemical steps of group II self-splicing. EMBO J. 1996 Jul 1;15(13):3466–3476. [PMC free article] [PubMed] [Google Scholar]
  4. Chanfreau G., Jacquier A. Catalytic site components common to both splicing steps of a group II intron. Science. 1994 Nov 25;266(5189):1383–1387. doi: 10.1126/science.7973729. [DOI] [PubMed] [Google Scholar]
  5. Conway L., Wickens M. Modification interference analysis of reactions using RNA substrates. Methods Enzymol. 1989;180:369–379. doi: 10.1016/0076-6879(89)80112-0. [DOI] [PubMed] [Google Scholar]
  6. Costa M., Michel F. Frequent use of the same tertiary motif by self-folding RNAs. EMBO J. 1995 Mar 15;14(6):1276–1285. doi: 10.1002/j.1460-2075.1995.tb07111.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Doudna J. A., Cech T. R. Self-assembly of a group I intron active site from its component tertiary structural domains. RNA. 1995 Mar;1(1):36–45. [PMC free article] [PubMed] [Google Scholar]
  8. Doudna J. A., Gerber A. S., Cherry J. M., Szostak J. W. Genetic dissection of an RNA enzyme. Cold Spring Harb Symp Quant Biol. 1987;52:173–180. doi: 10.1101/sqb.1987.052.01.022. [DOI] [PubMed] [Google Scholar]
  9. Eckstein F. Nucleoside phosphorothioates. Annu Rev Biochem. 1985;54:367–402. doi: 10.1146/annurev.bi.54.070185.002055. [DOI] [PubMed] [Google Scholar]
  10. Franzen J. S., Zhang M., Peebles C. L. Kinetic analysis of the 5' splice junction hydrolysis of a group II intron promoted by domain 5. Nucleic Acids Res. 1993 Feb 11;21(3):627–634. doi: 10.1093/nar/21.3.627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Harris M. E., Nolan J. M., Malhotra A., Brown J. W., Harvey S. C., Pace N. R. Use of photoaffinity crosslinking and molecular modeling to analyze the global architecture of ribonuclease P RNA. EMBO J. 1994 Sep 1;13(17):3953–3963. doi: 10.1002/j.1460-2075.1994.tb06711.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jacquier A., Michel F. Multiple exon-binding sites in class II self-splicing introns. Cell. 1987 Jul 3;50(1):17–29. doi: 10.1016/0092-8674(87)90658-1. [DOI] [PubMed] [Google Scholar]
  13. Jarrell K. A., Dietrich R. C., Perlman P. S. Group II intron domain 5 facilitates a trans-splicing reaction. Mol Cell Biol. 1988 Jun;8(6):2361–2366. doi: 10.1128/mcb.8.6.2361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Koch J. L., Boulanger S. C., Dib-Hajj S. D., Hebbar S. K., Perlman P. S. Group II introns deleted for multiple substructures retain self-splicing activity. Mol Cell Biol. 1992 May;12(5):1950–1958. doi: 10.1128/mcb.12.5.1950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Michel F., Ferat J. L. Structure and activities of group II introns. Annu Rev Biochem. 1995;64:435–461. doi: 10.1146/annurev.bi.64.070195.002251. [DOI] [PubMed] [Google Scholar]
  16. Michel F., Umesono K., Ozeki H. Comparative and functional anatomy of group II catalytic introns--a review. Gene. 1989 Oct 15;82(1):5–30. doi: 10.1016/0378-1119(89)90026-7. [DOI] [PubMed] [Google Scholar]
  17. Michel F., Westhof E. Modelling of the three-dimensional architecture of group I catalytic introns based on comparative sequence analysis. J Mol Biol. 1990 Dec 5;216(3):585–610. doi: 10.1016/0022-2836(90)90386-Z. [DOI] [PubMed] [Google Scholar]
  18. Michels W. J., Jr, Pyle A. M. Conversion of a group II intron into a new multiple-turnover ribozyme that selectively cleaves oligonucleotides: elucidation of reaction mechanism and structure/function relationships. Biochemistry. 1995 Mar 7;34(9):2965–2977. doi: 10.1021/bi00009a028. [DOI] [PubMed] [Google Scholar]
  19. Murphy F. L., Cech T. R. GAAA tetraloop and conserved bulge stabilize tertiary structure of a group I intron domain. J Mol Biol. 1994 Feb 11;236(1):49–63. doi: 10.1006/jmbi.1994.1117. [DOI] [PubMed] [Google Scholar]
  20. Peebles C. L., Zhang M., Perlman P. S., Franzen J. S. Catalytically critical nucleotide in domain 5 of a group II intron. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4422–4426. doi: 10.1073/pnas.92.10.4422. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Podar M., Dib-Hajj S., Perlman P. S. A UV-induced, Mg(2+)-dependent crosslink traps an active form of domain 3 of a self-splicing group II intron. RNA. 1995 Oct;1(8):828–840. [PMC free article] [PubMed] [Google Scholar]
  22. Podar M., Perlman P. S., Padgett R. A. Stereochemical selectivity of group II intron splicing, reverse splicing, and hydrolysis reactions. Mol Cell Biol. 1995 Aug;15(8):4466–4478. doi: 10.1128/mcb.15.8.4466. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Pyle A. M., Green J. B. Building a kinetic framework for group II intron ribozyme activity: quantitation of interdomain binding and reaction rate. Biochemistry. 1994 Mar 8;33(9):2716–2725. doi: 10.1021/bi00175a047. [DOI] [PubMed] [Google Scholar]
  24. van der Horst G., Christian A., Inoue T. Reconstitution of a group I intron self-splicing reaction with an activator RNA. Proc Natl Acad Sci U S A. 1991 Jan 1;88(1):184–188. doi: 10.1073/pnas.88.1.184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. von Ahsen U., Noller H. F. Identification of bases in 16S rRNA essential for tRNA binding at the 30S ribosomal P site. Science. 1995 Jan 13;267(5195):234–237. doi: 10.1126/science.7528943. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES