Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1997 Jun 2;16(11):2977–2984. doi: 10.1093/emboj/16.11.2977

The thrombin E192Q-BPTI complex reveals gross structural rearrangements: implications for the interaction with antithrombin and thrombomodulin.

A van de Locht 1, W Bode 1, R Huber 1, B F Le Bonniec 1, S R Stone 1, C T Esmon 1, M T Stubbs 1
PMCID: PMC1169916  PMID: 9214615

Abstract

Previous crystal structures of thrombin indicate that the 60-insertion loop is a rigid moiety that partially occludes the active site, suggesting that this structural feature plays a decisive role in restricting thrombin's specificity. This restricted specificity is typified by the experimental observation that thrombin is not inhibited by micromolar concentrations of basic pancreatic trypsin inhibitor (BPTI). Surprisingly, a single atom mutation in thrombin (E192Q) results in a 10(-8) M affinity for BPTI. The crystal structure of human thrombin mutant E192Q has been solved in complex with BPTI at 2.3 A resolution. Binding of the Kunitz inhibitor is accompanied by gross structural rearrangements in thrombin. In particular, thrombin's 60-loop is found in a significantly different conformation. Concomitant reorganization of other surface loops that surround the active site, i.e. the 37-loop, the 148-loop and the 99-loop, is observed. Thrombin can therefore undergo major structural reorganization upon strong ligand binding. Implications for the interaction of thrombin with antithrombin and thrombomodulin are discussed.

Full Text

The Full Text of this article is available as a PDF (301.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ayala Y. M., Vindigni A., Nayal M., Spolar R. S., Record M. T., Jr, Di Cera E. Thermodynamic investigation of hirudin binding to the slow and fast forms of thrombin: evidence for folding transitions in the inhibitor and protease coupled to binding. J Mol Biol. 1995 Nov 10;253(5):787–798. doi: 10.1006/jmbi.1995.0591. [DOI] [PubMed] [Google Scholar]
  2. Bode W., Huber R. Natural protein proteinase inhibitors and their interaction with proteinases. Eur J Biochem. 1992 Mar 1;204(2):433–451. doi: 10.1111/j.1432-1033.1992.tb16654.x. [DOI] [PubMed] [Google Scholar]
  3. Bode W., Mayr I., Baumann U., Huber R., Stone S. R., Hofsteenge J. The refined 1.9 A crystal structure of human alpha-thrombin: interaction with D-Phe-Pro-Arg chloromethylketone and significance of the Tyr-Pro-Pro-Trp insertion segment. EMBO J. 1989 Nov;8(11):3467–3475. doi: 10.1002/j.1460-2075.1989.tb08511.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Davie E. W., Fujikawa K., Kisiel W. The coagulation cascade: initiation, maintenance, and regulation. Biochemistry. 1991 Oct 29;30(43):10363–10370. doi: 10.1021/bi00107a001. [DOI] [PubMed] [Google Scholar]
  5. De Cristofaro R., De Candia E., Picozzi M., Landolfi R. Conformational transitions linked to active site ligation in human thrombin: effect on the interaction with fibrinogen and the cleavable platelet receptor. J Mol Biol. 1995 Jan 27;245(4):447–458. doi: 10.1006/jmbi.1994.0036. [DOI] [PubMed] [Google Scholar]
  6. Dennis S., Wallace A., Hofsteenge J., Stone S. R. Use of fragments of hirudin to investigate thrombin-hirudin interaction. Eur J Biochem. 1990 Feb 22;188(1):61–66. doi: 10.1111/j.1432-1033.1990.tb15371.x. [DOI] [PubMed] [Google Scholar]
  7. Engh R. A., Brandstetter H., Sucher G., Eichinger A., Baumann U., Bode W., Huber R., Poll T., Rudolph R., von der Saal W. Enzyme flexibility, solvent and 'weak' interactions characterize thrombin-ligand interactions: implications for drug design. Structure. 1996 Nov 15;4(11):1353–1362. doi: 10.1016/s0969-2126(96)00142-6. [DOI] [PubMed] [Google Scholar]
  8. Engh R. A., Huber R., Bode W., Schulze A. J. Divining the serpin inhibition mechanism: a suicide substrate 'springe'? Trends Biotechnol. 1995 Dec;13(12):503–510. doi: 10.1016/S0167-7799(00)89013-7. [DOI] [PubMed] [Google Scholar]
  9. Esmon C. T. The roles of protein C and thrombomodulin in the regulation of blood coagulation. J Biol Chem. 1989 Mar 25;264(9):4743–4746. [PubMed] [Google Scholar]
  10. Esmon N. L., DeBault L. E., Esmon C. T. Proteolytic formation and properties of gamma-carboxyglutamic acid-domainless protein C. J Biol Chem. 1983 May 10;258(9):5548–5553. [PubMed] [Google Scholar]
  11. GREEN N. M. Kinetics of the reaction between trypsin and the pancreatic trypsin inhibitor. Biochem J. 1957 Jul;66(3):407–415. doi: 10.1042/bj0660407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Guinto E. R., Ye J., Le Bonniec B. F., Esmon C. T. Glu192-->Gln substitution in thrombin yields an enzyme that is effectively inhibited by bovine pancreatic trypsin inhibitor and tissue factor pathway inhibitor. J Biol Chem. 1994 Jul 15;269(28):18395–18400. [PubMed] [Google Scholar]
  13. Hofsteenge J., Taguchi H., Stone S. R. Effect of thrombomodulin on the kinetics of the interaction of thrombin with substrates and inhibitors. Biochem J. 1986 Jul 1;237(1):243–251. doi: 10.1042/bj2370243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Huber R., Kukla D., Bode W., Schwager P., Bartels K., Deisenhofer J., Steigemann W. Structure of the complex formed by bovine trypsin and bovine pancreatic trypsin inhibitor. II. Crystallographic refinement at 1.9 A resolution. J Mol Biol. 1974 Oct 15;89(1):73–101. doi: 10.1016/0022-2836(74)90163-6. [DOI] [PubMed] [Google Scholar]
  15. Jones T. A., Zou J. Y., Cowan S. W., Kjeldgaard M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A. 1991 Mar 1;47(Pt 2):110–119. doi: 10.1107/s0108767390010224. [DOI] [PubMed] [Google Scholar]
  16. Le Bonniec B. F., Esmon C. T. Glu-192----Gln substitution in thrombin mimics the catalytic switch induced by thrombomodulin. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7371–7375. doi: 10.1073/pnas.88.16.7371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Le Bonniec B. F., Guinto E. R., MacGillivray R. T., Stone S. R., Esmon C. T. The role of thrombin's Tyr-Pro-Pro-Trp motif in the interaction with fibrinogen, thrombomodulin, protein C, antithrombin III, and the Kunitz inhibitors. J Biol Chem. 1993 Sep 5;268(25):19055–19061. [PubMed] [Google Scholar]
  18. Le Bonniec B. F., MacGillivray R. T., Esmon C. T. Thrombin Glu-39 restricts the P'3 specificity to nonacidic residues. J Biol Chem. 1991 Jul 25;266(21):13796–13803. [PubMed] [Google Scholar]
  19. Liu L. W., Rezaie A. R., Carson C. W., Esmon N. L., Esmon C. T. Occupancy of anion binding exosite 2 on thrombin determines Ca2+ dependence of protein C activation. J Biol Chem. 1994 Apr 22;269(16):11807–11812. [PubMed] [Google Scholar]
  20. Otting G., Liepinsh E., Wüthrich K. Disulfide bond isomerization in BPTI and BPTI(G36S): an NMR study of correlated mobility in proteins. Biochemistry. 1993 Apr 13;32(14):3571–3582. doi: 10.1021/bi00065a008. [DOI] [PubMed] [Google Scholar]
  21. Owen M. C., Brennan S. O., Lewis J. H., Carrell R. W. Mutation of antitrypsin to antithrombin. alpha 1-antitrypsin Pittsburgh (358 Met leads to Arg), a fatal bleeding disorder. N Engl J Med. 1983 Sep 22;309(12):694–698. doi: 10.1056/NEJM198309223091203. [DOI] [PubMed] [Google Scholar]
  22. Parry M. A., Stone S. R., Hofsteenge J., Jackman M. P. Evidence for common structural changes in thrombin induced by active-site or exosite binding. Biochem J. 1993 Mar 15;290(Pt 3):665–670. doi: 10.1042/bj2900665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rezaie A. R. Tryptophan 60-D in the B-insertion loop of thrombin modulates the thrombin-antithrombin reaction. Biochemistry. 1996 Feb 13;35(6):1918–1924. doi: 10.1021/bi952065y. [DOI] [PubMed] [Google Scholar]
  24. Rydel T. J., Tulinsky A., Bode W., Huber R. Refined structure of the hirudin-thrombin complex. J Mol Biol. 1991 Sep 20;221(2):583–601. doi: 10.1016/0022-2836(91)80074-5. [DOI] [PubMed] [Google Scholar]
  25. Schmitz T., Rothe M., Dodt J. Mechanism of the inhibition of alpha-thrombin by hirudin-derived fragments hirudin(1-47) and hirudin(45-65). Eur J Biochem. 1991 Jan 1;195(1):251–256. doi: 10.1111/j.1432-1033.1991.tb15701.x. [DOI] [PubMed] [Google Scholar]
  26. Stubbs M. T., Bode W. A player of many parts: the spotlight falls on thrombin's structure. Thromb Res. 1993 Jan 1;69(1):1–58. doi: 10.1016/0049-3848(93)90002-6. [DOI] [PubMed] [Google Scholar]
  27. Stubbs M. T., Bode W. The clot thickens: clues provided by thrombin structure. Trends Biochem Sci. 1995 Jan;20(1):23–28. doi: 10.1016/s0968-0004(00)88945-8. [DOI] [PubMed] [Google Scholar]
  28. Stubbs M. T., Oschkinat H., Mayr I., Huber R., Angliker H., Stone S. R., Bode W. The interaction of thrombin with fibrinogen. A structural basis for its specificity. Eur J Biochem. 1992 May 15;206(1):187–195. doi: 10.1111/j.1432-1033.1992.tb16916.x. [DOI] [PubMed] [Google Scholar]
  29. Wells C. M., Di Cera E. Thrombin is a Na(+)-activated enzyme. Biochemistry. 1992 Dec 1;31(47):11721–11730. doi: 10.1021/bi00162a008. [DOI] [PubMed] [Google Scholar]
  30. Ye J., Esmon N. L., Esmon C. T., Johnson A. E. The active site of thrombin is altered upon binding to thrombomodulin. Two distinct structural changes are detected by fluorescence, but only one correlates with protein C activation. J Biol Chem. 1991 Dec 5;266(34):23016–23021. [PubMed] [Google Scholar]
  31. van de Locht A., Lamba D., Bauer M., Huber R., Friedrich T., Kröger B., Höffken W., Bode W. Two heads are better than one: crystal structure of the insect derived double domain Kazal inhibitor rhodniin in complex with thrombin. EMBO J. 1995 Nov 1;14(21):5149–5157. doi: 10.1002/j.1460-2075.1995.tb00199.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. van de Locht A., Stubbs M. T., Bode W., Friedrich T., Bollschweiler C., Höffken W., Huber R. The ornithodorin-thrombin crystal structure, a key to the TAP enigma? EMBO J. 1996 Nov 15;15(22):6011–6017. [PMC free article] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES