Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1997 Jun 2;16(11):2996–3006. doi: 10.1093/emboj/16.11.2996

The extent of affinity maturation differs between the memory and antibody-forming cell compartments in the primary immune response.

K G Smith 1, A Light 1, G J Nossal 1, D M Tarlinton 1
PMCID: PMC1169918  PMID: 9214617

Abstract

Immunization with protein-containing antigens results in two types of antigen-specific B cell: antibody forming cells (AFCs) producing antibody of progressively higher affinity and memory lymphocytes capable of producing high affinity antibody upon re-exposure to antigen. The issue of the inter-relationship between affinity maturation of memory B cells and AFCs was addressed through analysis of single, antigen-specific B cells from the memory and AFC compartments during the primary response to a model antigen. Only 65% of splenic memory B cells were found capable of producing high affinity antibody, meaning that low affinity cells persist into this compartment. In contrast, by 28 days after immunization all AFCs produced high affinity antibody. We identified a unique, persistent sub-population of bone marrow AFCs containing few somatic mutations, suggesting they arose early in the response, yet highly enriched for an identical affinity-enhancing amino acid exchange, suggesting strong selection. Our results imply that affinity maturation of a primary immune response occurs by the early selective differentiation of high affinity variants into AFCs which subsequently persist in the bone marrow. In contrast, the memory B-cell population contains few, if any, cells from the early response and is less stringently selected.

Full Text

The Full Text of this article is available as a PDF (506.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen D., Simon T., Sablitzky F., Rajewsky K., Cumano A. Antibody engineering for the analysis of affinity maturation of an anti-hapten response. EMBO J. 1988 Jul;7(7):1995–2001. doi: 10.1002/j.1460-2075.1988.tb03038.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bachmann M. F., Kündig T. M., Odermatt B., Hengartner H., Zinkernagel R. M. Free recirculation of memory B cells versus antigen-dependent differentiation to antibody-forming cells. J Immunol. 1994 Oct 15;153(8):3386–3397. [PubMed] [Google Scholar]
  3. Betz A. G., Rada C., Pannell R., Milstein C., Neuberger M. S. Passenger transgenes reveal intrinsic specificity of the antibody hypermutation mechanism: clustering, polarity, and specific hot spots. Proc Natl Acad Sci U S A. 1993 Mar 15;90(6):2385–2388. doi: 10.1073/pnas.90.6.2385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Blier P. R., Bothwell A. A limited number of B cell lineages generates the heterogeneity of a secondary immune response. J Immunol. 1987 Dec 15;139(12):3996–4006. [PubMed] [Google Scholar]
  5. Bothwell A. L., Paskind M., Reth M., Imanishi-Kari T., Rajewsky K., Baltimore D. Heavy chain variable region contribution to the NPb family of antibodies: somatic mutation evident in a gamma 2a variable region. Cell. 1981 Jun;24(3):625–637. doi: 10.1016/0092-8674(81)90089-1. [DOI] [PubMed] [Google Scholar]
  6. Brüggemann M., Müller H. J., Burger C., Rajewsky K. Idiotypic selection of an antibody mutant with changed hapten binding specificity, resulting from a point mutation in position 50 of the heavy chain. EMBO J. 1986 Jul;5(7):1561–1566. doi: 10.1002/j.1460-2075.1986.tb04397.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Celada F., Schmidt D., Strom R. Determination of avidity of anti-albumin antibodies in the mouse. Influence of the number of cells transferred on the quality of the secondary adoptive response. Immunology. 1969 Aug;17(2):189–198. [PMC free article] [PubMed] [Google Scholar]
  8. Cumano A., Rajewsky K. Clonal recruitment and somatic mutation in the generation of immunological memory to the hapten NP. EMBO J. 1986 Oct;5(10):2459–2468. doi: 10.1002/j.1460-2075.1986.tb04522.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cumano A., Rajewsky K. Structure of primary anti-(4-hydroxy-3-nitrophenyl)acetyl (NP) antibodies in normal and idiotypically suppressed C57BL/6 mice. Eur J Immunol. 1985 May;15(5):512–520. doi: 10.1002/eji.1830150517. [DOI] [PubMed] [Google Scholar]
  10. Dilosa R. M., Maeda K., Masuda A., Szakal A. K., Tew J. G. Germinal center B cells and antibody production in the bone marrow. J Immunol. 1991 Jun 15;146(12):4071–4077. [PubMed] [Google Scholar]
  11. EISEN H. N., SISKIND G. W. VARIATIONS IN AFFINITIES OF ANTIBODIES DURING THE IMMUNE RESPONSE. Biochemistry. 1964 Jul;3:996–1008. doi: 10.1021/bi00895a027. [DOI] [PubMed] [Google Scholar]
  12. Elliott L. H., Roszman T. L. Antigenic selection of IgG precursor subpopulations. J Immunol. 1975 Aug;115(2):495–501. [PubMed] [Google Scholar]
  13. Goidl E. A., Paul W. E., Siskind G. W., Benacerraf B. The effect of antigen dose and time after immunization on the amount and affinity of anti-hapten antibody. J Immunol. 1968 Feb;100(2):371–375. [PubMed] [Google Scholar]
  14. Gray D. Regulation of immunological memory. Curr Opin Immunol. 1994 Jun;6(3):425–430. doi: 10.1016/0952-7915(94)90122-8. [DOI] [PubMed] [Google Scholar]
  15. Gray D., Skarvall H. B-cell memory is short-lived in the absence of antigen. Nature. 1988 Nov 3;336(6194):70–73. doi: 10.1038/336070a0. [DOI] [PubMed] [Google Scholar]
  16. Herzenberg L. A., Black S. J., Tokuhisa T., Herzenberg L. A. Memory B cells at successive stages of differentiation. Affinity maturation and the role of IgD receptors. J Exp Med. 1980 May 1;151(5):1071–1087. doi: 10.1084/jem.151.5.1071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Heyman B. The immune complex: possible ways of regulating the antibody response. Immunol Today. 1990 Sep;11(9):310–313. doi: 10.1016/0167-5699(90)90126-t. [DOI] [PubMed] [Google Scholar]
  18. Ho F., Lortan J. E., MacLennan I. C., Khan M. Distinct short-lived and long-lived antibody-producing cell populations. Eur J Immunol. 1986 Oct;16(10):1297–1301. doi: 10.1002/eji.1830161018. [DOI] [PubMed] [Google Scholar]
  19. Hyland L., Sangster M., Sealy R., Coleclough C. Respiratory virus infection of mice provokes a permanent humoral immune response. J Virol. 1994 Sep;68(9):6083–6086. doi: 10.1128/jvi.68.9.6083-6086.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Jacob J., Kassir R., Kelsoe G. In situ studies of the primary immune response to (4-hydroxy-3-nitrophenyl)acetyl. I. The architecture and dynamics of responding cell populations. J Exp Med. 1991 May 1;173(5):1165–1175. doi: 10.1084/jem.173.5.1165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Karasuyama H., Melchers F. Establishment of mouse cell lines which constitutively secrete large quantities of interleukin 2, 3, 4 or 5, using modified cDNA expression vectors. Eur J Immunol. 1988 Jan;18(1):97–104. doi: 10.1002/eji.1830180115. [DOI] [PubMed] [Google Scholar]
  22. Kelsoe G. Life and death in germinal centers (redux). Immunity. 1996 Feb;4(2):107–111. doi: 10.1016/s1074-7613(00)80675-5. [DOI] [PubMed] [Google Scholar]
  23. Lalor P. A., Nossal G. J., Sanderson R. D., McHeyzer-Williams M. G. Functional and molecular characterization of single, (4-hydroxy-3-nitrophenyl)acetyl (NP)-specific, IgG1+ B cells from antibody-secreting and memory B cell pathways in the C57BL/6 immune response to NP. Eur J Immunol. 1992 Nov;22(11):3001–3011. doi: 10.1002/eji.1830221136. [DOI] [PubMed] [Google Scholar]
  24. Liu A. H., Jena P. K., Wysocki L. J. Tracing the development of single memory-lineage B cells in a highly defined immune response. J Exp Med. 1996 May 1;183(5):2053–2063. doi: 10.1084/jem.183.5.2053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. MacLennan I. C. Germinal centers. Annu Rev Immunol. 1994;12:117–139. doi: 10.1146/annurev.iy.12.040194.001001. [DOI] [PubMed] [Google Scholar]
  26. McHeyzer-Williams M. G., McLean M. J., Lalor P. A., Nossal G. J. Antigen-driven B cell differentiation in vivo. J Exp Med. 1993 Jul 1;178(1):295–307. doi: 10.1084/jem.178.1.295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. McHeyzer-Williams M. G., Nossal G. J., Lalor P. A. Molecular characterization of single memory B cells. Nature. 1991 Apr 11;350(6318):502–505. doi: 10.1038/350502a0. [DOI] [PubMed] [Google Scholar]
  28. Nossal G. J., Riedel C. Sudden appearance of anti-protein IgG1-forming cell precursors early during primary immunization. Proc Natl Acad Sci U S A. 1989 Jun;86(12):4679–4683. doi: 10.1073/pnas.86.12.4679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Nossal G. J. The molecular and cellular basis of affinity maturation in the antibody response. Cell. 1992 Jan 10;68(1):1–2. doi: 10.1016/0092-8674(92)90198-l. [DOI] [PubMed] [Google Scholar]
  30. Rajewsky K. Clonal selection and learning in the antibody system. Nature. 1996 Jun 27;381(6585):751–758. doi: 10.1038/381751a0. [DOI] [PubMed] [Google Scholar]
  31. Ridderstad A., Nossal G. J., Tarlinton D. M. The xid mutation diminishes memory B cell generation but does not affect somatic hypermutation and selection. J Immunol. 1996 Oct 15;157(8):3357–3365. [PubMed] [Google Scholar]
  32. Schittek B., Rajewsky K. Maintenance of B-cell memory by long-lived cells generated from proliferating precursors. Nature. 1990 Aug 23;346(6286):749–751. doi: 10.1038/346749a0. [DOI] [PubMed] [Google Scholar]
  33. Siskind G. W., Benacerraf B. Cell selection by antigen in the immune response. Adv Immunol. 1969;10:1–50. doi: 10.1016/s0065-2776(08)60414-9. [DOI] [PubMed] [Google Scholar]
  34. Siskind G. W., Dunn P., Walker J. G. Studies on the control of antibody synthesis. II. Effect of antigen dose and of suppression by passive antibody on the affinity of antibody synthesized. J Exp Med. 1968 Jan 1;127(1):55–66. doi: 10.1084/jem.127.1.55. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Slifka M. K., Matloubian M., Ahmed R. Bone marrow is a major site of long-term antibody production after acute viral infection. J Virol. 1995 Mar;69(3):1895–1902. doi: 10.1128/jvi.69.3.1895-1902.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Smith K. G., Hewitson T. D., Nossal G. J., Tarlinton D. M. The phenotype and fate of the antibody-forming cells of the splenic foci. Eur J Immunol. 1996 Feb;26(2):444–448. doi: 10.1002/eji.1830260226. [DOI] [PubMed] [Google Scholar]
  37. Smith K. G., Nossal G. J., Tarlinton D. M. FAS is highly expressed in the germinal center but is not required for regulation of the B-cell response to antigen. Proc Natl Acad Sci U S A. 1995 Dec 5;92(25):11628–11632. doi: 10.1073/pnas.92.25.11628. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Smith K. G., Weiss U., Rajewsky K., Nossal G. J., Tarlinton D. M. Bcl-2 increases memory B cell recruitment but does not perturb selection in germinal centers. Immunity. 1994 Dec;1(9):803–813. doi: 10.1016/s1074-7613(94)80022-7. [DOI] [PubMed] [Google Scholar]
  39. Steiner L. A., Eisen H. N. The relative affinity of antibodies synthesized in the secondary response. J Exp Med. 1967 Dec 1;126(6):1185–1205. doi: 10.1084/jem.126.6.1185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Vitetta E. S., Berton M. T., Burger C., Kepron M., Lee W. T., Yin X. M. Memory B and T cells. Annu Rev Immunol. 1991;9:193–217. doi: 10.1146/annurev.iy.09.040191.001205. [DOI] [PubMed] [Google Scholar]
  41. Weiss U., Rajewsky K. The repertoire of somatic antibody mutants accumulating in the memory compartment after primary immunization is restricted through affinity maturation and mirrors that expressed in the secondary response. J Exp Med. 1990 Dec 1;172(6):1681–1689. doi: 10.1084/jem.172.6.1681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Weiss U., Zoebelein R., Rajewsky K. Accumulation of somatic mutants in the B cell compartment after primary immunization with a T cell-dependent antigen. Eur J Immunol. 1992 Feb;22(2):511–517. doi: 10.1002/eji.1830220233. [DOI] [PubMed] [Google Scholar]
  43. Zachau A. C., Strigård K., Baig S., Höjeberg B., Olsson T. Distribution of plasma cells secreting antibodies against nervous tissue antigens during experimental allergic encephalomyelitis enumerated by a nitrocellulose immunospot assay. J Neurol Sci. 1989 Jul;91(3):323–336. doi: 10.1016/0022-510x(89)90061-0. [DOI] [PubMed] [Google Scholar]
  44. van Rooijen N. Direct intrafollicular differentiation of memory B cells into plasma cells. Immunol Today. 1990 May;11(5):154–157. doi: 10.1016/0167-5699(90)90065-h. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES