Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1997 Jun 2;16(11):3057–3065. doi: 10.1093/emboj/16.11.3057

Co-amplification of the gamma-glutamylcysteine synthetase gene gsh1 and of the ABC transporter gene pgpA in arsenite-resistant Leishmania tarentolae.

K Grondin 1, A Haimeur 1, R Mukhopadhyay 1, B P Rosen 1, M Ouellette 1
PMCID: PMC1169924  PMID: 9214623

Abstract

Resistance to the oxyanion arsenite in the parasite Leishmania is multifactorial. We have described previously the frequent amplification of the ABC transporter gene pgpA, the presence of a non-PgpA thiol-metal efflux pump and increased levels of glutathione and trypanothione in resistant cells. Other loci are also amplified, although their role in resistance is unknown. By gene transfection, we have characterized one of these novel genes. It corresponds to gsh1, which encodes gamma-glutamylcysteine synthetase, an enzyme involved in the rate-limiting step of glutathione biosynthesis. Transfection of gsh1 in wild-type cells increased the levels of glutathione and trypanothione to levels found in resistant mutants. These transfectants were not resistant to metals. However, when gsh1 was transfected in partial revertants, it conferred resistance. As pgpA is frequently co-amplified with gsh1, we co-transfected the two genes into both wild-type and partial revertants. Arsenite resistance levels in wild-type cells could be accounted for by the contribution of PgpA alone. In the partial revertant, the gsh1 and pgpA gene product acted synergistically. These results support our previous suggestion that PgpA recognizes metals conjugated to thiols. Furthermore, amplification of gsh1 overcomes the rate-limiting step in the synthesis of trypanothione, contributing to resistance. In addition, the results suggest that at least one more factor acts synergistically with the gsh1 gene product.

Full Text

The Full Text of this article is available as a PDF (560.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bailey H. H., Gipp J. J., Ripple M., Wilding G., Mulcahy R. T. Increase in gamma-glutamylcysteine synthetase activity and steady-state messenger RNA levels in melphalan-resistant DU-145 human prostate carcinoma cells expressing elevated glutathione levels. Cancer Res. 1992 Sep 15;52(18):5115–5118. [PubMed] [Google Scholar]
  2. Beverley S. M. Gene amplification in Leishmania. Annu Rev Microbiol. 1991;45:417–444. doi: 10.1146/annurev.mi.45.100191.002221. [DOI] [PubMed] [Google Scholar]
  3. Borst P., Ouellette M. New mechanisms of drug resistance in parasitic protozoa. Annu Rev Microbiol. 1995;49:427–460. doi: 10.1146/annurev.mi.49.100195.002235. [DOI] [PubMed] [Google Scholar]
  4. Broeks A., Gerrard B., Allikmets R., Dean M., Plasterk R. H. Homologues of the human multidrug resistance genes MRP and MDR contribute to heavy metal resistance in the soil nematode Caenorhabditis elegans. EMBO J. 1996 Nov 15;15(22):6132–6143. [PMC free article] [PubMed] [Google Scholar]
  5. Brun R., Schönenberger Cultivation and in vitro cloning or procyclic culture forms of Trypanosoma brucei in a semi-defined medium. Short communication. Acta Trop. 1979 Sep;36(3):289–292. [PubMed] [Google Scholar]
  6. Callahan H. L., Beverley S. M. Heavy metal resistance: a new role for P-glycoproteins in Leishmania. J Biol Chem. 1991 Oct 5;266(28):18427–18430. [PubMed] [Google Scholar]
  7. Callahan H. L., Roberts W. L., Rainey P. M., Beverley S. M. The PGPA gene of Leishmania major mediates antimony (SbIII) resistance by decreasing influx and not by increasing efflux. Mol Biochem Parasitol. 1994 Nov;68(1):145–149. doi: 10.1016/0166-6851(94)00154-5. [DOI] [PubMed] [Google Scholar]
  8. Cole S. P., Bhardwaj G., Gerlach J. H., Mackie J. E., Grant C. E., Almquist K. C., Stewart A. J., Kurz E. U., Duncan A. M., Deeley R. G. Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science. 1992 Dec 4;258(5088):1650–1654. doi: 10.1126/science.1360704. [DOI] [PubMed] [Google Scholar]
  9. Cole S. P., Sparks K. E., Fraser K., Loe D. W., Grant C. E., Wilson G. M., Deeley R. G. Pharmacological characterization of multidrug resistant MRP-transfected human tumor cells. Cancer Res. 1994 Nov 15;54(22):5902–5910. [PubMed] [Google Scholar]
  10. Delnomdedieu M., Basti M. M., Otvos J. D., Thomas D. J. Reduction and binding of arsenate and dimethylarsinate by glutathione: a magnetic resonance study. Chem Biol Interact. 1994 Feb;90(2):139–155. doi: 10.1016/0009-2797(94)90099-x. [DOI] [PubMed] [Google Scholar]
  11. Dey S., Papadopoulou B., Haimeur A., Roy G., Grondin K., Dou D., Rosen B. P., Ouellette M. High level arsenite resistance in Leishmania tarentolae is mediated by an active extrusion system. Mol Biochem Parasitol. 1994 Sep;67(1):49–57. doi: 10.1016/0166-6851(94)90095-7. [DOI] [PubMed] [Google Scholar]
  12. Fairlamb A. H., Blackburn P., Ulrich P., Chait B. T., Cerami A. Trypanothione: a novel bis(glutathionyl)spermidine cofactor for glutathione reductase in trypanosomatids. Science. 1985 Mar 22;227(4693):1485–1487. doi: 10.1126/science.3883489. [DOI] [PubMed] [Google Scholar]
  13. Fairlamb A. H., Cerami A. Metabolism and functions of trypanothione in the Kinetoplastida. Annu Rev Microbiol. 1992;46:695–729. doi: 10.1146/annurev.mi.46.100192.003403. [DOI] [PubMed] [Google Scholar]
  14. Gipp J. J., Chang C., Mulcahy R. T. Cloning and nucleotide sequence of a full-length cDNA for human liver gamma-glutamylcysteine synthetase. Biochem Biophys Res Commun. 1992 May 29;185(1):29–35. doi: 10.1016/s0006-291x(05)80950-7. [DOI] [PubMed] [Google Scholar]
  15. Godwin A. K., Meister A., O'Dwyer P. J., Huang C. S., Hamilton T. C., Anderson M. E. High resistance to cisplatin in human ovarian cancer cell lines is associated with marked increase of glutathione synthesis. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):3070–3074. doi: 10.1073/pnas.89.7.3070. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Goto S., Yoshida K., Morikawa T., Urata Y., Suzuki K., Kondo T. Augmentation of transport for cisplatin-glutathione adduct in cisplatin-resistant cancer cells. Cancer Res. 1995 Oct 1;55(19):4297–4301. [PubMed] [Google Scholar]
  17. Griffith O. W., Meister A. Potent and specific inhibition of glutathione synthesis by buthionine sulfoximine (S-n-butyl homocysteine sulfoximine). J Biol Chem. 1979 Aug 25;254(16):7558–7560. [PubMed] [Google Scholar]
  18. Grondin K., Papadopoulou B., Ouellette M. Homologous recombination between direct repeat sequences yields P-glycoprotein containing amplicons in arsenite resistant Leishmania. Nucleic Acids Res. 1993 Apr 25;21(8):1895–1901. doi: 10.1093/nar/21.8.1895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ishikawa T., Bao J. J., Yamane Y., Akimaru K., Frindrich K., Wright C. D., Kuo M. T. Coordinated induction of MRP/GS-X pump and gamma-glutamylcysteine synthetase by heavy metals in human leukemia cells. J Biol Chem. 1996 Jun 21;271(25):14981–14988. doi: 10.1074/jbc.271.25.14981. [DOI] [PubMed] [Google Scholar]
  20. Ishikawa T., Wright C. D., Ishizuka H. GS-X pump is functionally overexpressed in cis-diamminedichloroplatinum (II)-resistant human leukemia HL-60 cells and down-regulated by cell differentiation. J Biol Chem. 1994 Nov 18;269(46):29085–29093. [PubMed] [Google Scholar]
  21. Kondo T., Yoshida K., Urata Y., Goto S., Gasa S., Taniguchi N. gamma-Glutamylcysteine synthetase and active transport of glutathione S-conjugate are responsive to heat shock in K562 erythroid cells. J Biol Chem. 1993 Sep 25;268(27):20366–20372. [PubMed] [Google Scholar]
  22. Lee T. C., Wei M. L., Chang W. J., Ho I. C., Lo J. F., Jan K. Y., Huang H. Elevation of glutathione levels and glutathione S-transferase activity in arsenic-resistant Chinese hamster ovary cells. In Vitro Cell Dev Biol. 1989 May;25(5):442–448. doi: 10.1007/BF02624629. [DOI] [PubMed] [Google Scholar]
  23. Li Z. S., Szczypka M., Lu Y. P., Thiele D. J., Rea P. A. The yeast cadmium factor protein (YCF1) is a vacuolar glutathione S-conjugate pump. J Biol Chem. 1996 Mar 15;271(11):6509–6517. doi: 10.1074/jbc.271.11.6509. [DOI] [PubMed] [Google Scholar]
  24. Lueder D. V., Phillips M. A. Characterization of Trypanosoma brucei gamma-glutamylcysteine synthetase, an essential enzyme in the biosynthesis of trypanothione (diglutathionylspermidine). J Biol Chem. 1996 Jul 19;271(29):17485–17490. doi: 10.1074/jbc.271.29.17485. [DOI] [PubMed] [Google Scholar]
  25. Mulcahy R. T., Bailey H. H., Gipp J. J. Transfection of complementary DNAs for the heavy and light subunits of human gamma-glutamylcysteine synthetase results in an elevation of intracellular glutathione and resistance to melphalan. Cancer Res. 1995 Nov 1;55(21):4771–4775. [PubMed] [Google Scholar]
  26. Mutoh N., Nakagawa C. W., Hayashi Y. Molecular cloning and nucleotide sequencing of the gamma-glutamylcysteine synthetase gene of the fission yeast Schizosaccharomyces pombe. J Biochem. 1995 Feb;117(2):283–288. doi: 10.1093/jb/117.2.283. [DOI] [PubMed] [Google Scholar]
  27. Ohtake Y., Yabuuchi S. Molecular cloning of the gamma-glutamylcysteine synthetase gene of Saccharomyces cerevisiae. Yeast. 1991 Dec;7(9):953–961. doi: 10.1002/yea.320070907. [DOI] [PubMed] [Google Scholar]
  28. Ouellette M., Fase-Fowler F., Borst P. The amplified H circle of methotrexate-resistant leishmania tarentolae contains a novel P-glycoprotein gene. EMBO J. 1990 Apr;9(4):1027–1033. doi: 10.1002/j.1460-2075.1990.tb08206.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Ouellette M., Papadopoulou B. Mechanisms of drug resistance in Leishmania. Parasitol Today. 1993 May;9(5):150–153. doi: 10.1016/0169-4758(93)90135-3. [DOI] [PubMed] [Google Scholar]
  30. Papadopoulou B., Roy G., Dey S., Rosen B. P., Olivier M., Ouellette M. Gene disruption of the P-glycoprotein related gene pgpa of Leishmania tarentolae. Biochem Biophys Res Commun. 1996 Jul 25;224(3):772–778. doi: 10.1006/bbrc.1996.1098. [DOI] [PubMed] [Google Scholar]
  31. Papadopoulou B., Roy G., Ouellette M. A novel antifolate resistance gene on the amplified H circle of Leishmania. EMBO J. 1992 Oct;11(10):3601–3608. doi: 10.1002/j.1460-2075.1992.tb05444.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Papadopoulou B., Roy G., Ouellette M. Frequent amplification of a short chain dehydrogenase gene as part of circular and linear amplicons in methotrexate resistant Leishmania. Nucleic Acids Res. 1993 Sep 11;21(18):4305–4312. doi: 10.1093/nar/21.18.4305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Ryan K. A., Dasgupta S., Beverley S. M. Shuttle cosmid vectors for the trypanosomatid parasite Leishmania. Gene. 1993 Sep 6;131(1):145–150. doi: 10.1016/0378-1119(93)90684-u. [DOI] [PubMed] [Google Scholar]
  34. Seelig G. F., Meister A. Glutathione biosynthesis; gamma-glutamylcysteine synthetase from rat kidney. Methods Enzymol. 1985;113:379–390. doi: 10.1016/s0076-6879(85)13050-8. [DOI] [PubMed] [Google Scholar]
  35. Singh A. K., Liu H. Y., Lee S. T. Atomic absorption spectrophotometric measurement of intracellular arsenite in arsenite-resistant Leishmania. Mol Biochem Parasitol. 1994 Jul;66(1):161–164. doi: 10.1016/0166-6851(94)90049-3. [DOI] [PubMed] [Google Scholar]
  36. Tommasini R., Evers R., Vogt E., Mornet C., Zaman G. J., Schinkel A. H., Borst P., Martinoia E. The human multidrug resistance-associated protein functionally complements the yeast cadmium resistance factor 1. Proc Natl Acad Sci U S A. 1996 Jun 25;93(13):6743–6748. doi: 10.1073/pnas.93.13.6743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Wang H. F., Lee T. C. Glutathione S-transferase pi facilitates the excretion of arsenic from arsenic-resistant Chinese hamster ovary cells. Biochem Biophys Res Commun. 1993 May 14;192(3):1093–1099. doi: 10.1006/bbrc.1993.1529. [DOI] [PubMed] [Google Scholar]
  38. White T. C., Fase-Fowler F., van Luenen H., Calafat J., Borst P. The H circles of Leishmania tarentolae are a unique amplifiable system of oligomeric DNAs associated with drug resistance. J Biol Chem. 1988 Nov 15;263(32):16977–16983. [PubMed] [Google Scholar]
  39. Yao K. S., Godwin A. K., Johnson S. W., Ozols R. F., O'Dwyer P. J., Hamilton T. C. Evidence for altered regulation of gamma-glutamylcysteine synthetase gene expression among cisplatin-sensitive and cisplatin-resistant human ovarian cancer cell lines. Cancer Res. 1995 Oct 1;55(19):4367–4374. [PubMed] [Google Scholar]
  40. Yokomizo A., Kohno K., Wada M., Ono M., Morrow C. S., Cowan K. H., Kuwano M. Markedly decreased expression of glutathione S-transferase pi gene in human cancer cell lines resistant to buthionine sulfoximine, an inhibitor of cellular glutathione synthesis. J Biol Chem. 1995 Aug 18;270(33):19451–19457. doi: 10.1074/jbc.270.33.19451. [DOI] [PubMed] [Google Scholar]
  41. Zaman G. J., Lankelma J., van Tellingen O., Beijnen J., Dekker H., Paulusma C., Oude Elferink R. P., Baas F., Borst P. Role of glutathione in the export of compounds from cells by the multidrug-resistance-associated protein. Proc Natl Acad Sci U S A. 1995 Aug 15;92(17):7690–7694. doi: 10.1073/pnas.92.17.7690. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES