Abstract
Divalent metal ions play a crucial role in forming the catalytic centres of DNA endonucleases. Substitution of Mg2+ ions by Fe2+ ions in two archaeal intron-encoded homing endonucleases, I-DmoI and I-PorI, yielded functional enzymes and enabled the generation of reactive hydroxyl radicals within the metal ion binding sites. Specific hydroxyl radical-induced cleavage was observed within, and immediately after, two conserved LAGLIDADG motifs in both proteins and at sites at, and near, the scissile phosphates of the corresponding DNA substrates. Titration of Fe2+-containing protein-DNA complexes with Ca2+ ions, which are unable to support endonucleolytic activity, was performed to distinguish between the individual metal ions in the complex. Mutations of single amino acids in this region impaired catalytic activity and caused the preferential loss of a subset of hydroxyl radical cleavages in both the protein and the DNA substrate, suggesting an active role in metal ion coordination for these amino acids. The data indicate that the endonucleases cleave their DNA substrates as monomeric enzymes, and contain a minimum of four divalent metal ions located at or near the catalytic centres of each endonuclease. The metal ions involved in cleaving the coding and the non-coding strand are positioned immediately after the N- and C-terminally located LAGLIDADG motifs, respectively. The dual protein/nucleic acid footprinting approach described here is generally applicable to other protein-nucleic acid complexes when the natural metal ion can be replaced by Fe2+.
Full Text
The Full Text of this article is available as a PDF (493.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aagaard C., Awayez M. J., Garrett R. A. Profile of the DNA recognition site of the archaeal homing endonuclease I-DmoI. Nucleic Acids Res. 1997 Apr 15;25(8):1523–1530. doi: 10.1093/nar/25.8.1523. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Aagaard C., Dalgaard J. Z., Garrett R. A. Intercellular mobility and homing of an archaeal rDNA intron confers a selective advantage over intron- cells of Sulfolobus acidocaldarius. Proc Natl Acad Sci U S A. 1995 Dec 19;92(26):12285–12289. doi: 10.1073/pnas.92.26.12285. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beese L. S., Steitz T. A. Structural basis for the 3'-5' exonuclease activity of Escherichia coli DNA polymerase I: a two metal ion mechanism. EMBO J. 1991 Jan;10(1):25–33. doi: 10.1002/j.1460-2075.1991.tb07917.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burggraf S., Larsen N., Woese C. R., Stetter K. O. An intron within the 16S ribosomal RNA gene of the archaeon Pyrobaculum aerophilum. Proc Natl Acad Sci U S A. 1993 Mar 15;90(6):2547–2550. doi: 10.1073/pnas.90.6.2547. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Colleaux L., D'Auriol L., Galibert F., Dujon B. Recognition and cleavage site of the intron-encoded omega transposase. Proc Natl Acad Sci U S A. 1988 Aug;85(16):6022–6026. doi: 10.1073/pnas.85.16.6022. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dalgaard J. Z., Garrett R. A., Belfort M. A site-specific endonuclease encoded by a typical archaeal intron. Proc Natl Acad Sci U S A. 1993 Jun 15;90(12):5414–5417. doi: 10.1073/pnas.90.12.5414. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dalgaard J. Z., Garrett R. A. Protein-coding introns from the 23S rRNA-encoding gene form stable circles in the hyperthermophilic archaeon Pyrobaculum organotrophum. Gene. 1992 Nov 2;121(1):103–110. doi: 10.1016/0378-1119(92)90167-n. [DOI] [PubMed] [Google Scholar]
- Ettner N., Metzger J. W., Lederer T., Hulmes J. D., Kisker C., Hinrichs W., Ellestad G. A., Hillen W. Proximity mapping of the Tet repressor-tetracycline-Fe2+ complex by hydrogen peroxide mediated protein cleavage. Biochemistry. 1995 Jan 10;34(1):22–31. doi: 10.1021/bi00001a004. [DOI] [PubMed] [Google Scholar]
- Farber J. M., Levine R. L. Sequence of a peptide susceptible to mixed-function oxidation. Probable cation binding site in glutamine synthetase. J Biol Chem. 1986 Apr 5;261(10):4574–4578. [PubMed] [Google Scholar]
- Halford S. E., Goodall A. J. Modes of DNA cleavage by the EcoRV restriction endonuclease. Biochemistry. 1988 Mar 8;27(5):1771–1777. doi: 10.1021/bi00405a058. [DOI] [PubMed] [Google Scholar]
- Jacquier A., Dujon B. An intron-encoded protein is active in a gene conversion process that spreads an intron into a mitochondrial gene. Cell. 1985 Jun;41(2):383–394. doi: 10.1016/s0092-8674(85)80011-8. [DOI] [PubMed] [Google Scholar]
- Jensen T. H., Jensen A., Kjems J. Tools for the production and purification of full-length, N- or C-terminal 32P-labeled protein, applied to HIV-1 Gag and Rev. Gene. 1995 Sep 11;162(2):235–237. doi: 10.1016/0378-1119(95)00328-4. [DOI] [PubMed] [Google Scholar]
- Jensen T. H., Leffers H., Kjems J. Intermolecular binding sites of human immunodeficiency virus type 1 Rev protein determined by protein footprinting. J Biol Chem. 1995 Jun 9;270(23):13777–13784. doi: 10.1074/jbc.270.23.13777. [DOI] [PubMed] [Google Scholar]
- Kostrewa D., Winkler F. K. Mg2+ binding to the active site of EcoRV endonuclease: a crystallographic study of complexes with substrate and product DNA at 2 A resolution. Biochemistry. 1995 Jan 17;34(2):683–696. doi: 10.1021/bi00002a036. [DOI] [PubMed] [Google Scholar]
- Kunkel T. A., Roberts J. D., Zakour R. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 1987;154:367–382. doi: 10.1016/0076-6879(87)54085-x. [DOI] [PubMed] [Google Scholar]
- Lambowitz A. M., Belfort M. Introns as mobile genetic elements. Annu Rev Biochem. 1993;62:587–622. doi: 10.1146/annurev.bi.62.070193.003103. [DOI] [PubMed] [Google Scholar]
- Lykke-Andersen J., Garrett R. A., Kjems J. Protein footprinting approach to mapping DNA binding sites of two archaeal homing enzymes: evidence for a two-domain protein structure. Nucleic Acids Res. 1996 Oct 15;24(20):3982–3989. doi: 10.1093/nar/24.20.3982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lykke-Andersen J., Thi-Ngoc H. P., Garrett R. A. DNA substrate specificity and cleavage kinetics of an archaeal homing-type endonuclease from Pyrobaculum organotrophum. Nucleic Acids Res. 1994 Nov 11;22(22):4583–4590. doi: 10.1093/nar/22.22.4583. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marshall P., Lemieux C. The I-CeuI endonuclease recognizes a sequence of 19 base pairs and preferentially cleaves the coding strand of the Chlamydomonas moewusii chloroplast large subunit rRNA gene. Nucleic Acids Res. 1992 Dec 11;20(23):6401–6407. doi: 10.1093/nar/20.23.6401. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Platis I. E., Ermácora M. R., Fox R. O. Oxidative polypeptide cleavage mediated by EDTA-Fe covalently linked to cysteine residues. Biochemistry. 1993 Nov 30;32(47):12761–12767. doi: 10.1021/bi00210a027. [DOI] [PubMed] [Google Scholar]
- Price M. A., Tullius T. D. Using hydroxyl radical to probe DNA structure. Methods Enzymol. 1992;212:194–219. doi: 10.1016/0076-6879(92)12013-g. [DOI] [PubMed] [Google Scholar]
- Rana T. M., Meares C. F. Transfer of oxygen from an artificial protease to peptide carbon during proteolysis. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10578–10582. doi: 10.1073/pnas.88.23.10578. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sargueil B., Hatat D., Delahodde A., Jacq C. In vivo and in vitro analyses of an intron-encoded DNA endonuclease from yeast mitochondria. Recognition site by site-directed mutagenesis. Nucleic Acids Res. 1990 Oct 11;18(19):5659–5665. doi: 10.1093/nar/18.19.5659. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schapira M., Desdouets C., Jacq C., Perea J. I-Sce III an intron-encoded DNA endonuclease from yeast mitochondria. Asymmetrical DNA binding properties and cleavage reaction. Nucleic Acids Res. 1993 Aug 11;21(16):3683–3689. doi: 10.1093/nar/21.16.3683. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steitz T. A., Steitz J. A. A general two-metal-ion mechanism for catalytic RNA. Proc Natl Acad Sci U S A. 1993 Jul 15;90(14):6498–6502. doi: 10.1073/pnas.90.14.6498. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Suck D., Oefner C. Structure of DNase I at 2.0 A resolution suggests a mechanism for binding to and cutting DNA. Nature. 1986 Jun 5;321(6070):620–625. doi: 10.1038/321620a0. [DOI] [PubMed] [Google Scholar]
- Turmel M., Mercier J. P., Côté V., Otis C., Lemieux C. The site-specific DNA endonuclease encoded by a group I intron in the Chlamydomonas pallidostigmatica chloroplast small subunit rRNA gene introduces a single-strand break at low concentrations of Mg2+. Nucleic Acids Res. 1995 Jul 11;23(13):2519–2525. doi: 10.1093/nar/23.13.2519. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vipond I. B., Baldwin G. S., Halford S. E. Divalent metal ions at the active sites of the EcoRV and EcoRI restriction endonucleases. Biochemistry. 1995 Jan 17;34(2):697–704. doi: 10.1021/bi00002a037. [DOI] [PubMed] [Google Scholar]
- Volbeda A., Lahm A., Sakiyama F., Suck D. Crystal structure of Penicillium citrinum P1 nuclease at 2.8 A resolution. EMBO J. 1991 Jul;10(7):1607–1618. doi: 10.1002/j.1460-2075.1991.tb07683.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wei C. H., Chou W. Y., Chang G. G. Identification of Asp258 as the metal coordinate of pigeon liver malic enzyme by site-specific mutagenesis. Biochemistry. 1995 Jun 20;34(24):7949–7954. doi: 10.1021/bi00024a020. [DOI] [PubMed] [Google Scholar]
- Wernette C., Saldanha R., Smith D., Ming D., Perlman P. S., Butow R. A. Complex recognition site for the group I intron-encoded endonuclease I-SceII. Mol Cell Biol. 1992 Feb;12(2):716–723. doi: 10.1128/mcb.12.2.716. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wittmayer P. K., Raines R. T. Substrate binding and turnover by the highly specific I-PpoI endonuclease. Biochemistry. 1996 Jan 23;35(3):1076–1083. doi: 10.1021/bi952363v. [DOI] [PubMed] [Google Scholar]