Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1997 Jun 2;16(11):3349–3356. doi: 10.1093/emboj/16.11.3349

Mutation in Escherichia coli under starvation conditions: a new pathway leading to small deletions in strains defective in mismatch correction.

B A Bridges 1, A R Timms 1
PMCID: PMC1169951  PMID: 9214650

Abstract

Strains of Escherichia coli carrying the mutY mutation lack a mismatch correction glycosylase that removes adenines from various mismatch situations. In growing bacteria, 8-oxoguanine-adenine mispairs persist and can give rise to G-->T transversions during subsequent replication cycles. We now show that when trpA23 mutY bacteria are held under tryptophan starvation conditions the tryptophan-independent mutants that arise include small in-frame deletions in addition to transversions. The trpA23 reversion system appears to be unusual in that small in-frame deletions occurring in a particular region of the gene can lead to the production of a functional protein. We suggest that this is a consequence of the deletion causing the polar group on the arginine at the trpA23 site to be pulled away from the active site of the enzyme. Such deletions are also found with starved bacteria defective in methyl-directed mismatch correction activity (mutH, mutL or mutS), and deletion mutations are also found among the much lower number of mutants that arise in bacteria wild-type for mismatch correction. There is thus a pathway, hitherto undetected, leading to deletions probably from mismatches under conditions of growth restraint. RecA, UmuC, UvrA, MutH,L,S, SbcC and SbcD proteins are not required for the operation of the deletion pathway. A possible explanation is that the deletion pathway is not dependent upon further replication and that it fails to be discernible in growing cells because it is relatively slow acting and mismatches are likely to encounter a DNA replication fork before the initial step of the deletion pathway.

Full Text

The Full Text of this article is available as a PDF (229.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balbinder E., Coll B., Hutchinson J., Bianchi A. S., Groman T., Wheeler K. A., Meyer M. Participation of the SOS system in producing deletions in E. coli plasmids. Mutat Res. 1993 Apr;286(2):253–265. doi: 10.1016/0027-5107(93)90190-q. [DOI] [PubMed] [Google Scholar]
  2. Boyle J. M., Symonds N. Radiation-sensitive mutants of T4D. I. T4y: a new radiation-sensitive mutant; effect of the mutation on radiation survival, growth and recombination. Mutat Res. 1969 Nov-Dec;8(3):431–439. doi: 10.1016/0027-5107(69)90060-8. [DOI] [PubMed] [Google Scholar]
  3. Bridges B. A. Mutation in resting cells: the role of endogenous DNA damage. Cancer Surv. 1996;28:155–167. [PubMed] [Google Scholar]
  4. Bridges B. A., Sekiguchi M., Tajiri T. Effect of mutY and mutM/fpg-1 mutations on starvation-associated mutation in Escherichia coli: implications for the role of 7,8-dihydro-8-oxoguanine. Mol Gen Genet. 1996 Jun 12;251(3):352–357. doi: 10.1007/BF02172526. [DOI] [PubMed] [Google Scholar]
  5. Bridges B. A. Spontaneous mutation in stationary-phase Escherichia coli WP2 carrying various DNA repair alleles. Mutat Res. 1993 Jul;302(3):173–176. doi: 10.1016/0165-7992(93)90045-w. [DOI] [PubMed] [Google Scholar]
  6. Cairns J., Foster P. L. Adaptive reversion of a frameshift mutation in Escherichia coli. Genetics. 1991 Aug;128(4):695–701. doi: 10.1093/genetics/128.4.695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cortopassi G. A., Shibata D., Soong N. W., Arnheim N. A pattern of accumulation of a somatic deletion of mitochondrial DNA in aging human tissues. Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7370–7374. doi: 10.1073/pnas.89.16.7370. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. DAVIS B. D., MINGIOLI E. S. Mutants of Escherichia coli requiring methionine or vitamin B12. J Bacteriol. 1950 Jul;60(1):17–28. doi: 10.1128/jb.60.1.17-28.1950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fix D. F., Burns P. A., Glickman B. W. DNA sequence analysis of spontaneous mutation in a PolA1 strain of Escherichia coli indicates sequence-specific effects. Mol Gen Genet. 1987 May;207(2-3):267–272. doi: 10.1007/BF00331588. [DOI] [PubMed] [Google Scholar]
  10. Hruszkewycz A. M., Bergtold D. S. The 8-hydroxyguanine content of isolated mitochondria increases with lipid peroxidation. Mutat Res. 1990 Jun;244(2):123–128. doi: 10.1016/0165-7992(90)90060-w. [DOI] [PubMed] [Google Scholar]
  11. Hyde C. C., Ahmed S. A., Padlan E. A., Miles E. W., Davies D. R. Three-dimensional structure of the tryptophan synthase alpha 2 beta 2 multienzyme complex from Salmonella typhimurium. J Biol Chem. 1988 Nov 25;263(33):17857–17871. [PubMed] [Google Scholar]
  12. Jankovic M., Kostic T., Savic D. J. DNA sequence analysis of spontaneous histidine mutations in a polA1 strain of Escherichia coli K12 suggests a specific role of the GTGG sequence. Mol Gen Genet. 1990 Sep;223(3):481–486. doi: 10.1007/BF00264457. [DOI] [PubMed] [Google Scholar]
  13. Leach D. R. Cloning and characterization of DNAs with palindromic sequences. Genet Eng (N Y) 1996;18:1–11. doi: 10.1007/978-1-4899-1766-9_1. [DOI] [PubMed] [Google Scholar]
  14. Mackay W. J., Han S., Samson L. D. DNA alkylation repair limits spontaneous base substitution mutations in Escherichia coli. J Bacteriol. 1994 Jun;176(11):3224–3230. doi: 10.1128/jb.176.11.3224-3230.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Maki H., Sekiguchi M. MutT protein specifically hydrolyses a potent mutagenic substrate for DNA synthesis. Nature. 1992 Jan 16;355(6357):273–275. doi: 10.1038/355273a0. [DOI] [PubMed] [Google Scholar]
  16. Murgola E. J. tRNA, suppression, and the code. Annu Rev Genet. 1985;19:57–80. doi: 10.1146/annurev.ge.19.120185.000421. [DOI] [PubMed] [Google Scholar]
  17. Newcombe H. B. Delayed Phenotypic Expression of Spontaneous Mutations in Escherichia Coli. Genetics. 1948 Sep;33(5):447–476. doi: 10.1093/genetics/33.5.447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Prival M. J., Cebula T. A. Sequence analysis of mutations arising during prolonged starvation of Salmonella typhimurium. Genetics. 1992 Oct;132(2):303–310. doi: 10.1093/genetics/132.2.303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Richter C. Do mitochondrial DNA fragments promote cancer and aging? FEBS Lett. 1988 Dec 5;241(1-2):1–5. doi: 10.1016/0014-5793(88)81018-4. [DOI] [PubMed] [Google Scholar]
  20. Sinden R. R., Zheng G. X., Brankamp R. G., Allen K. N. On the deletion of inverted repeated DNA in Escherichia coli: effects of length, thermal stability, and cruciform formation in vivo. Genetics. 1991 Dec;129(4):991–1005. doi: 10.1093/genetics/129.4.991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Taddei F., Matic I., Radman M. cAMP-dependent SOS induction and mutagenesis in resting bacterial populations. Proc Natl Acad Sci U S A. 1995 Dec 5;92(25):11736–11740. doi: 10.1073/pnas.92.25.11736. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Tajiri T., Maki H., Sekiguchi M. Functional cooperation of MutT, MutM and MutY proteins in preventing mutations caused by spontaneous oxidation of guanine nucleotide in Escherichia coli. Mutat Res. 1995 May;336(3):257–267. doi: 10.1016/0921-8777(94)00062-b. [DOI] [PubMed] [Google Scholar]
  23. Urios A., Herrera G., Aleixandre V., Blanco M. Processing of MucA protein is required for spontaneous and benzo[a]pyrene-induced reversion of the Escherichia coli trpA23 missense mutation by G.C-T.A transversions: effect of a deficiency in the MutY DNA glycosylase. Mutat Res. 1994 Dec 1;311(2):257–263. doi: 10.1016/0027-5107(94)90184-8. [DOI] [PubMed] [Google Scholar]
  24. Yanofsky C., Cox E. C., Horn V. The unusual mutagenic specificity of an E. Coli mutator gene. Proc Natl Acad Sci U S A. 1966 Feb;55(2):274–281. doi: 10.1073/pnas.55.2.274. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Yanofsky C., Ito J., Horn V. Amino acid replacements and the genetic code. Cold Spring Harb Symp Quant Biol. 1966;31:151–162. doi: 10.1101/sqb.1966.031.01.023. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES