Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1997 Jul 1;16(13):3822–3832. doi: 10.1093/emboj/16.13.3822

Glutamate transporter EAAC-1-deficient mice develop dicarboxylic aminoaciduria and behavioral abnormalities but no neurodegeneration.

P Peghini 1, J Janzen 1, W Stoffel 1
PMCID: PMC1170006  PMID: 9233792

Abstract

Four L-glutamate neurotransmitter transporters, the three Na(+)-dependent GLAST-1, GLT-1 and EAAC-1, and the Cl(-)-dependent EAAT-4, form a new family of structurally related integral plasma membrane proteins with different distribution in the central nervous system. They may have pivotal functions in the regulation of synaptic L-glutamate concentration during neurotransmission and are believed to prevent glutamate neurotoxicity. To investigate the specific physiological and pathophysiological role of the neuronal EAAC-1, which is also expressed in kidney and small intestine, we have generated two independent mouse lines lacking EAAC-1. eaac-1(-/-) mice develop dicarboxylic aminoaciduria. No neurodegeneration has been observed during a period of >12 months, but homozygous mutants display a significantly reduced spontaneous locomotor activity.

Full Text

The Full Text of this article is available as a PDF (733.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bensimon G., Lacomblez L., Meininger V. A controlled trial of riluzole in amyotrophic lateral sclerosis. ALS/Riluzole Study Group. N Engl J Med. 1994 Mar 3;330(9):585–591. doi: 10.1056/NEJM199403033300901. [DOI] [PubMed] [Google Scholar]
  2. Biscoe T. J., Straughan D. W. Micro-electrophoretic studies of neurones in the cat hippocampus. J Physiol. 1966 Mar;183(2):341–359. doi: 10.1113/jphysiol.1966.sp007869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bradley A., Evans M., Kaufman M. H., Robertson E. Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature. 1984 May 17;309(5965):255–256. doi: 10.1038/309255a0. [DOI] [PubMed] [Google Scholar]
  4. CURTIS D. R., WATKINS J. C. The excitation and depression of spinal neurones by structurally related amino acids. J Neurochem. 1960 Sep;6:117–141. doi: 10.1111/j.1471-4159.1960.tb13458.x. [DOI] [PubMed] [Google Scholar]
  5. Choi D. W. Glutamate neurotoxicity and diseases of the nervous system. Neuron. 1988 Oct;1(8):623–634. doi: 10.1016/0896-6273(88)90162-6. [DOI] [PubMed] [Google Scholar]
  6. Choi D. W., Rothman S. M. The role of glutamate neurotoxicity in hypoxic-ischemic neuronal death. Annu Rev Neurosci. 1990;13:171–182. doi: 10.1146/annurev.ne.13.030190.001131. [DOI] [PubMed] [Google Scholar]
  7. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  8. Croucher M. J., Collins J. F., Meldrum B. S. Anticonvulsant action of excitatory amino acid antagonists. Science. 1982 May 21;216(4548):899–901. doi: 10.1126/science.7079744. [DOI] [PubMed] [Google Scholar]
  9. Curtis D. R., Johnston G. A. Amino acid transmitters in the mammalian central nervous system. Ergeb Physiol. 1974;69(0):97–188. doi: 10.1007/3-540-06498-2_3. [DOI] [PubMed] [Google Scholar]
  10. Danbolt N. C., Storm-Mathisen J., Kanner B. I. An [Na+ + K+]coupled L-glutamate transporter purified from rat brain is located in glial cell processes. Neuroscience. 1992 Nov;51(2):295–310. doi: 10.1016/0306-4522(92)90316-t. [DOI] [PubMed] [Google Scholar]
  11. Dowd L. A., Robinson M. B. Rapid stimulation of EAAC1-mediated Na+-dependent L-glutamate transport activity in C6 glioma cells by phorbol ester. J Neurochem. 1996 Aug;67(2):508–516. doi: 10.1046/j.1471-4159.1996.67020508.x. [DOI] [PubMed] [Google Scholar]
  12. During M. J., Ryder K. M., Spencer D. D. Hippocampal GABA transporter function in temporal-lobe epilepsy. Nature. 1995 Jul 13;376(6536):174–177. doi: 10.1038/376174a0. [DOI] [PubMed] [Google Scholar]
  13. During M. J., Spencer D. D. Extracellular hippocampal glutamate and spontaneous seizure in the conscious human brain. Lancet. 1993 Jun 26;341(8861):1607–1610. doi: 10.1016/0140-6736(93)90754-5. [DOI] [PubMed] [Google Scholar]
  14. Engvall E. Enzyme immunoassay ELISA and EMIT. Methods Enzymol. 1980;70(A):419–439. doi: 10.1016/s0076-6879(80)70067-8. [DOI] [PubMed] [Google Scholar]
  15. Fairman W. A., Vandenberg R. J., Arriza J. L., Kavanaugh M. P., Amara S. G. An excitatory amino-acid transporter with properties of a ligand-gated chloride channel. Nature. 1995 Jun 15;375(6532):599–603. doi: 10.1038/375599a0. [DOI] [PubMed] [Google Scholar]
  16. GOODFRIEND T. L., LEVINE L., FASMAN G. D. ANTIBODIES TO BRADYKININ AND ANGIOTENSIN: A USE OF CARBODIIMIDES IN IMMUNOLOGY. Science. 1964 Jun 12;144(3624):1344–1346. doi: 10.1126/science.144.3624.1344. [DOI] [PubMed] [Google Scholar]
  17. Gavrieli Y., Sherman Y., Ben-Sasson S. A. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol. 1992 Nov;119(3):493–501. doi: 10.1083/jcb.119.3.493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Giménez-Llort L., Martínez E., Ferré S. Dopamine-independent and adenosine-dependent mechanisms involved in the effects of N-methyl-D-aspartate on motor activity in mice. Eur J Pharmacol. 1995 Mar 6;275(2):171–177. doi: 10.1016/0014-2999(94)00768-3. [DOI] [PubMed] [Google Scholar]
  19. Imperato A., Honoré T., Jensen L. H. Dopamine release in the nucleus caudatus and in the nucleus accumbens is under glutamatergic control through non-NMDA receptors: a study in freely-moving rats. Brain Res. 1990 Oct 22;530(2):223–228. doi: 10.1016/0006-8993(90)91286-p. [DOI] [PubMed] [Google Scholar]
  20. Kanai Y., Hediger M. A. Primary structure and functional characterization of a high-affinity glutamate transporter. Nature. 1992 Dec 3;360(6403):467–471. doi: 10.1038/360467a0. [DOI] [PubMed] [Google Scholar]
  21. LUCAS D. R., NEWHOUSE J. P. The toxic effect of sodium L-glutamate on the inner layers of the retina. AMA Arch Ophthalmol. 1957 Aug;58(2):193–201. doi: 10.1001/archopht.1957.00940010205006. [DOI] [PubMed] [Google Scholar]
  22. Layer R. T., Uretsky N. J., Wallace L. J. Effects of morphine in the nucleus accumbens on stimulant-induced locomotion. Pharmacol Biochem Behav. 1991 Sep;40(1):21–26. doi: 10.1016/0091-3057(91)90315-s. [DOI] [PubMed] [Google Scholar]
  23. Lehre K. P., Levy L. M., Ottersen O. P., Storm-Mathisen J., Danbolt N. C. Differential expression of two glial glutamate transporters in the rat brain: quantitative and immunocytochemical observations. J Neurosci. 1995 Mar;15(3 Pt 1):1835–1853. doi: 10.1523/JNEUROSCI.15-03-01835.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Olney J. W., Sharpe L. G. Brain lesions in an infant rhesus monkey treated with monsodium glutamate. Science. 1969 Oct 17;166(3903):386–388. doi: 10.1126/science.166.3903.386. [DOI] [PubMed] [Google Scholar]
  25. Plaitakis A., Caroscio J. T. Abnormal glutamate metabolism in amyotrophic lateral sclerosis. Ann Neurol. 1987 Nov;22(5):575–579. doi: 10.1002/ana.410220503. [DOI] [PubMed] [Google Scholar]
  26. Plaitakis A., Constantakakis E., Smith J. The neuroexcitotoxic amino acids glutamate and aspartate are altered in the spinal cord and brain in amyotrophic lateral sclerosis. Ann Neurol. 1988 Sep;24(3):446–449. doi: 10.1002/ana.410240314. [DOI] [PubMed] [Google Scholar]
  27. Pogun S., Dawson V., Kuhar M. J. Nitric oxide inhibits 3H-glutamate transport in synaptosomes. Synapse. 1994 Sep;18(1):21–26. doi: 10.1002/syn.890180104. [DOI] [PubMed] [Google Scholar]
  28. Pomara N., Singh R., Deptula D., Chou J. C., Schwartz M. B., LeWitt P. A. Glutamate and other CSF amino acids in Alzheimer's disease. Am J Psychiatry. 1992 Feb;149(2):251–254. doi: 10.1176/ajp.149.2.251. [DOI] [PubMed] [Google Scholar]
  29. Reichlin M. Use of glutaraldehyde as a coupling agent for proteins and peptides. Methods Enzymol. 1980;70(A):159–165. doi: 10.1016/s0076-6879(80)70047-2. [DOI] [PubMed] [Google Scholar]
  30. Rogers S. W., Andrews P. I., Gahring L. C., Whisenand T., Cauley K., Crain B., Hughes T. E., Heinemann S. F., McNamara J. O. Autoantibodies to glutamate receptor GluR3 in Rasmussen's encephalitis. Science. 1994 Jul 29;265(5172):648–651. doi: 10.1126/science.8036512. [DOI] [PubMed] [Google Scholar]
  31. Rothstein J. D., Dykes-Hoberg M., Pardo C. A., Bristol L. A., Jin L., Kuncl R. W., Kanai Y., Hediger M. A., Wang Y., Schielke J. P. Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron. 1996 Mar;16(3):675–686. doi: 10.1016/s0896-6273(00)80086-0. [DOI] [PubMed] [Google Scholar]
  32. Rothstein J. D., Martin L. J., Kuncl R. W. Decreased glutamate transport by the brain and spinal cord in amyotrophic lateral sclerosis. N Engl J Med. 1992 May 28;326(22):1464–1468. doi: 10.1056/NEJM199205283262204. [DOI] [PubMed] [Google Scholar]
  33. Rothstein J. D., Martin L., Levey A. I., Dykes-Hoberg M., Jin L., Wu D., Nash N., Kuncl R. W. Localization of neuronal and glial glutamate transporters. Neuron. 1994 Sep;13(3):713–725. doi: 10.1016/0896-6273(94)90038-8. [DOI] [PubMed] [Google Scholar]
  34. Sarantis M., Attwell D. Glutamate uptake in mammalian retinal glia is voltage- and potassium-dependent. Brain Res. 1990 May 21;516(2):322–325. doi: 10.1016/0006-8993(90)90935-5. [DOI] [PubMed] [Google Scholar]
  35. Shreve P. E., Uretsky N. J. Role of quisqualic acid receptors in the hypermotility response produced by the injection of AMPA into the nucleus accumbens. Pharmacol Biochem Behav. 1988 Jun;30(2):379–384. doi: 10.1016/0091-3057(88)90471-6. [DOI] [PubMed] [Google Scholar]
  36. Smith C. P., Weremowicz S., Kanai Y., Stelzner M., Morton C. C., Hediger M. A. Assignment of the gene coding for the human high-affinity glutamate transporter EAAC1 to 9p24: potential role in dicarboxylic aminoaciduria and neurodegenerative disorders. Genomics. 1994 Mar 15;20(2):335–336. doi: 10.1006/geno.1994.1183. [DOI] [PubMed] [Google Scholar]
  37. Swarna M., Rao D. N., Reddy P. P. Dicarboxylic aminoaciduria associated with mental retardation. Hum Genet. 1989 Jun;82(3):299–300. doi: 10.1007/BF00291178. [DOI] [PubMed] [Google Scholar]
  38. Szatkowski M., Barbour B., Attwell D. Non-vesicular release of glutamate from glial cells by reversed electrogenic glutamate uptake. Nature. 1990 Nov 29;348(6300):443–446. doi: 10.1038/348443a0. [DOI] [PubMed] [Google Scholar]
  39. Teijema H. L., van Gelderen H. H., Giesberts M. A., Laurent de Angulo M. S. Dicarboxylic aminoaciduria: an inborn error of glutamate and aspartate transport with metabolic implications, in combination with a hyperprolinemia. Metabolism. 1974 Feb;23(2):115–123. doi: 10.1016/0026-0495(74)90108-5. [DOI] [PubMed] [Google Scholar]
  40. Twyman R. E., Gahring L. C., Spiess J., Rogers S. W. Glutamate receptor antibodies activate a subset of receptors and reveal an agonist binding site. Neuron. 1995 Apr;14(4):755–762. doi: 10.1016/0896-6273(95)90219-8. [DOI] [PubMed] [Google Scholar]
  41. Volterra A., Trotti D., Floridi S., Racagni G. Reactive oxygen species inhibit high-affinity glutamate uptake: molecular mechanism and neuropathological implications. Ann N Y Acad Sci. 1994 Nov 17;738:153–162. doi: 10.1111/j.1749-6632.1994.tb21800.x. [DOI] [PubMed] [Google Scholar]
  42. Von Lubitz D. K., Paul I. A., Carter M., Jacobson K. A. Effects of N6-cyclopentyl adenosine and 8-cyclopentyl-1,3-dipropylxanthine on N-methyl-D-aspartate induced seizures in mice. Eur J Pharmacol. 1993 Nov 16;249(3):265–270. doi: 10.1016/0014-2999(93)90521-i. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Watkins J. C., Evans R. H. Excitatory amino acid transmitters. Annu Rev Pharmacol Toxicol. 1981;21:165–204. doi: 10.1146/annurev.pa.21.040181.001121. [DOI] [PubMed] [Google Scholar]
  44. Zerangue N., Arriza J. L., Amara S. G., Kavanaugh M. P. Differential modulation of human glutamate transporter subtypes by arachidonic acid. J Biol Chem. 1995 Mar 24;270(12):6433–6435. doi: 10.1074/jbc.270.12.6433. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES