Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1997 Jul 1;16(13):3833–3841. doi: 10.1093/emboj/16.13.3833

Mitochondrial activation directly triggers the exocytosis of insulin in permeabilized pancreatic beta-cells.

P Maechler 1, E D Kennedy 1, T Pozzan 1, C B Wollheim 1
PMCID: PMC1170007  PMID: 9233793

Abstract

In the pancreatic beta-cell, insulin secretion is stimulated by glucose metabolism resulting in membrane potential-dependent elevation of cytosolic Ca2+ ([Ca2+]c). This cascade involves the mitochondrial membrane potential (delta psi[m]) hyperpolarization and elevation of mitochondrial Ca2+ ([Ca2+]m) which activates the Ca(2+)-sensitive NADH-generating dehydrogenases. Metabolism-secretion coupling requires unidentified signals, other than [Ca2+]c, possibly generated by the mitochondria through the rise in [Ca2+]m. To test this paradigm, we have established an alpha-toxin permeabilized cell preparation permitting the simultaneous monitoring of [Ca2+] with mitochondrially targeted aequorin and insulin secretion under conditions of saturating [ATP] (10 mM) and of clamped [Ca2+]c at substimulatory levels (500 nM). The tricarboxylic acid (TCA) cycle intermediate succinate hyperpolarized delta psi(m), raised [Ca2+]m up to 1.5 microM and stimulated insulin secretion 20-fold, without changing [Ca2+]c. Blockade of the uniporter-mediated Ca2+ influx into the mitochondria abolished the secretory response. Moreover, glycerophosphate, which raises [Ca2+]m by hyperpolarizing delta psi(m) without supplying carbons to the TCA cycle, failed to stimulate exocytosis. Activation of the TCA cycle with citrate evoked secretion only when combined with glycerophosphate. Thus, mitochondrially driven insulin secretion at permissive [Ca2+]c requires both a substrate for the TCA cycle and a rise in [Ca2+]m. Therefore, mitochondrial metabolism generates factors distinct from Ca2+ and ATP capable of inducing insulin exocytosis.

Full Text

The Full Text of this article is available as a PDF (521.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashcroft F. M., Rorsman P. Electrophysiology of the pancreatic beta-cell. Prog Biophys Mol Biol. 1989;54(2):87–143. doi: 10.1016/0079-6107(89)90013-8. [DOI] [PubMed] [Google Scholar]
  2. Bers D. M., Patton C. W., Nuccitelli R. A practical guide to the preparation of Ca2+ buffers. Methods Cell Biol. 1994;40:3–29. doi: 10.1016/s0091-679x(08)61108-5. [DOI] [PubMed] [Google Scholar]
  3. Bers D. M., Patton C. W., Nuccitelli R. A practical guide to the preparation of Ca2+ buffers. Methods Cell Biol. 1994;40:3–29. doi: 10.1016/s0091-679x(08)61108-5. [DOI] [PubMed] [Google Scholar]
  4. Bokvist K., Eliasson L., Ammälä C., Renström E., Rorsman P. Co-localization of L-type Ca2+ channels and insulin-containing secretory granules and its significance for the initiation of exocytosis in mouse pancreatic B-cells. EMBO J. 1995 Jan 3;14(1):50–57. doi: 10.1002/j.1460-2075.1995.tb06974.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brini M., Marsault R., Bastianutto C., Alvarez J., Pozzan T., Rizzuto R. Transfected aequorin in the measurement of cytosolic Ca2+ concentration ([Ca2+]c). A critical evaluation. J Biol Chem. 1995 Apr 28;270(17):9896–9903. doi: 10.1074/jbc.270.17.9896. [DOI] [PubMed] [Google Scholar]
  6. Civelek V. N., Deeney J. T., Shalosky N. J., Tornheim K., Hansford R. G., Prentki M., Corkey B. E. Regulation of pancreatic beta-cell mitochondrial metabolism: influence of Ca2+, substrate and ADP. Biochem J. 1996 Sep 1;318(Pt 2):615–621. doi: 10.1042/bj3180615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cox D. A., Matlib M. A. A role for the mitochondrial Na(+)-Ca2+ exchanger in the regulation of oxidative phosphorylation in isolated heart mitochondria. J Biol Chem. 1993 Jan 15;268(2):938–947. [PubMed] [Google Scholar]
  8. Duchen M. R., Smith P. A., Ashcroft F. M. Substrate-dependent changes in mitochondrial function, intracellular free calcium concentration and membrane channels in pancreatic beta-cells. Biochem J. 1993 Aug 15;294(Pt 1):35–42. doi: 10.1042/bj2940035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gembal M., Detimary P., Gilon P., Gao Z. Y., Henquin J. C. Mechanisms by which glucose can control insulin release independently from its action on adenosine triphosphate-sensitive K+ channels in mouse B cells. J Clin Invest. 1993 Mar;91(3):871–880. doi: 10.1172/JCI116308. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  11. Gunter T. E., Gunter K. K., Sheu S. S., Gavin C. E. Mitochondrial calcium transport: physiological and pathological relevance. Am J Physiol. 1994 Aug;267(2 Pt 1):C313–C339. doi: 10.1152/ajpcell.1994.267.2.C313. [DOI] [PubMed] [Google Scholar]
  12. Hajnóczky G., Robb-Gaspers L. D., Seitz M. B., Thomas A. P. Decoding of cytosolic calcium oscillations in the mitochondria. Cell. 1995 Aug 11;82(3):415–424. doi: 10.1016/0092-8674(95)90430-1. [DOI] [PubMed] [Google Scholar]
  13. Hansford R. G. Dehydrogenase activation by Ca2+ in cells and tissues. J Bioenerg Biomembr. 1991 Dec;23(6):823–854. doi: 10.1007/BF00786004. [DOI] [PubMed] [Google Scholar]
  14. Hansford R. G. Relation between mitochondrial calcium transport and control of energy metabolism. Rev Physiol Biochem Pharmacol. 1985;102:1–72. doi: 10.1007/BFb0034084. [DOI] [PubMed] [Google Scholar]
  15. Hellman B., Gylfe E., Grapengiesser E., Lund P. E., Berts A. Cytoplasmic Ca2+ oscillations in pancreatic beta-cells. Biochim Biophys Acta. 1992 Dec 11;1113(3-4):295–305. doi: 10.1016/0304-4157(92)90003-s. [DOI] [PubMed] [Google Scholar]
  16. Idahl L. A., Lembert N. Glycerol 3-phosphate-induced ATP production in intact mitochondria from pancreatic B-cells. Biochem J. 1995 Nov 15;312(Pt 1):287–292. doi: 10.1042/bj3120287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Jijakli H., Nadi A. B., Cook L., Best L., Sener A., Malaisse W. J. Insulinotropic action of methyl pyruvate: enzymatic and metabolic aspects. Arch Biochem Biophys. 1996 Nov 15;335(2):245–257. doi: 10.1006/abbi.1996.0505. [DOI] [PubMed] [Google Scholar]
  18. Johns D. R. The other human genome: mitochondrial DNA and disease. Nat Med. 1996 Oct;2(10):1065–1068. doi: 10.1038/nm1096-1065. [DOI] [PubMed] [Google Scholar]
  19. Jonas J. C., Li G., Palmer M., Weller U., Wollheim C. B. Dynamics of Ca2+ and guanosine 5'-[gamma-thio]triphosphate action on insulin secretion from alpha-toxin-permeabilized HIT-T15 cells. Biochem J. 1994 Jul 15;301(Pt 2):523–529. doi: 10.1042/bj3010523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Katayama N., Hughes S. J., Persaud S. J., Jones P. M., Howell S. L. Insulin secretion from islets of GK rats is not impaired after energy generating steps. Mol Cell Endocrinol. 1995 Jun;111(2):125–128. doi: 10.1016/0303-7207(95)03560-t. [DOI] [PubMed] [Google Scholar]
  21. Kennedy E. D., Rizzuto R., Theler J. M., Pralong W. F., Bastianutto C., Pozzan T., Wollheim C. B. Glucose-stimulated insulin secretion correlates with changes in mitochondrial and cytosolic Ca2+ in aequorin-expressing INS-1 cells. J Clin Invest. 1996 Dec 1;98(11):2524–2538. doi: 10.1172/JCI119071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Li G., Rungger-Brändle E., Just I., Jonas J. C., Aktories K., Wollheim C. B. Effect of disruption of actin filaments by Clostridium botulinum C2 toxin on insulin secretion in HIT-T15 cells and pancreatic islets. Mol Biol Cell. 1994 Nov;5(11):1199–1213. doi: 10.1091/mbc.5.11.1199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Liang Y., Matschinsky F. M. Content of CoA-esters in perifused rat islets stimulated by glucose and other fuels. Diabetes. 1991 Mar;40(3):327–333. doi: 10.2337/diab.40.3.327. [DOI] [PubMed] [Google Scholar]
  24. Maassen J. A., Kadowaki T. Maternally inherited diabetes and deafness: a new diabetes subtype. Diabetologia. 1996 Apr;39(4):375–382. doi: 10.1007/BF00400668. [DOI] [PubMed] [Google Scholar]
  25. Matschinsky F. M. Banting Lecture 1995. A lesson in metabolic regulation inspired by the glucokinase glucose sensor paradigm. Diabetes. 1996 Feb;45(2):223–241. doi: 10.2337/diab.45.2.223. [DOI] [PubMed] [Google Scholar]
  26. Nilsson T., Schultz V., Berggren P. O., Corkey B. E., Tornheim K. Temporal patterns of changes in ATP/ADP ratio, glucose 6-phosphate and cytoplasmic free Ca2+ in glucose-stimulated pancreatic beta-cells. Biochem J. 1996 Feb 15;314(Pt 1):91–94. doi: 10.1042/bj3140091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Palmer M., Jursch R., Weller U., Valeva A., Hilgert K., Kehoe M., Bhakdi S. Staphylococcus aureus alpha-toxin. Production of functionally intact, site-specifically modifiable protein by introduction of cysteine at positions 69, 130, and 186. J Biol Chem. 1993 Jun 5;268(16):11959–11962. [PubMed] [Google Scholar]
  28. Pralong W. F., Bartley C., Wollheim C. B. Single islet beta-cell stimulation by nutrients: relationship between pyridine nucleotides, cytosolic Ca2+ and secretion. EMBO J. 1990 Jan;9(1):53–60. doi: 10.1002/j.1460-2075.1990.tb08079.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Pralong W. F., Spät A., Wollheim C. B. Dynamic pacing of cell metabolism by intracellular Ca2+ transients. J Biol Chem. 1994 Nov 4;269(44):27310–27314. [PubMed] [Google Scholar]
  30. Prentki M., Corkey B. E. Are the beta-cell signaling molecules malonyl-CoA and cystolic long-chain acyl-CoA implicated in multiple tissue defects of obesity and NIDDM? Diabetes. 1996 Mar;45(3):273–283. doi: 10.2337/diab.45.3.273. [DOI] [PubMed] [Google Scholar]
  31. Prentki M. New insights into pancreatic beta-cell metabolic signaling in insulin secretion. Eur J Endocrinol. 1996 Mar;134(3):272–286. doi: 10.1530/eje.0.1340272. [DOI] [PubMed] [Google Scholar]
  32. Rizzuto R., Simpson A. W., Brini M., Pozzan T. Rapid changes of mitochondrial Ca2+ revealed by specifically targeted recombinant aequorin. Nature. 1992 Jul 23;358(6384):325–327. doi: 10.1038/358325a0. [DOI] [PubMed] [Google Scholar]
  33. Rutter G. A., Burnett P., Rizzuto R., Brini M., Murgia M., Pozzan T., Tavaré J. M., Denton R. M. Subcellular imaging of intramitochondrial Ca2+ with recombinant targeted aequorin: significance for the regulation of pyruvate dehydrogenase activity. Proc Natl Acad Sci U S A. 1996 May 28;93(11):5489–5494. doi: 10.1073/pnas.93.11.5489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Soejima A., Inoue K., Takai D., Kaneko M., Ishihara H., Oka Y., Hayashi J. I. Mitochondrial DNA is required for regulation of glucose-stimulated insulin secretion in a mouse pancreatic beta cell line, MIN6. J Biol Chem. 1996 Oct 18;271(42):26194–26199. doi: 10.1074/jbc.271.42.26194. [DOI] [PubMed] [Google Scholar]
  35. Theler J. M., Mollard P., Guérineau N., Vacher P., Pralong W. F., Schlegel W., Wollheim C. B. Video imaging of cytosolic Ca2+ in pancreatic beta-cells stimulated by glucose, carbachol, and ATP. J Biol Chem. 1992 Sep 5;267(25):18110–18117. [PubMed] [Google Scholar]
  36. von Gersdorff H., Vardi E., Matthews G., Sterling P. Evidence that vesicles on the synaptic ribbon of retinal bipolar neurons can be rapidly released. Neuron. 1996 Jun;16(6):1221–1227. doi: 10.1016/s0896-6273(00)80148-8. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES