Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1997 Jul 1;16(13):4142–4151. doi: 10.1093/emboj/16.13.4142

Bacteriophage T4 UvsW protein is a helicase involved in recombination, repair and the regulation of DNA replication origins.

K Carles-Kinch 1, J W George 1, K N Kreuzer 1
PMCID: PMC1170037  PMID: 9233823

Abstract

Bacteriophage T4 UvsW protein is involved in phage recombination, repair and the regulation of replication origins. Here, we provide evidence that UvsW functions as a helicase. First, expression of UvsW allows growth of an (otherwise inviable) Escherichia coli recG rnhA double mutant, consistent with UvsW being a functional analog of the RecG helicase. Second, UvsW contains helicase sequence motifs, and a substitution (K141R) in the Walker 'A' motif prevents growth of the E.coli recG rnhA double mutant. Third, UvsW, but not UvsW-K141R, inhibits replication from a T4 origin at which persistent RNA-DNA hybrids form and presumably trigger replication initiation. Fourth, mutations that inactivate UvsW and endonuclease VII (which cleaves DNA branches) synergistically block repair of double-strand breaks. These in vivo results are consistent with a model in which UvsW is a DNA helicase that catalyzes branch migration and dissociation of RNA-DNA hybrids. In support of this model, a partially purified GST/UvsW fusion protein, but not a GST/UvsW-K141R fusion, displays ssDNA-dependent ATPase activity and is able to unwind a branched DNA substrate.

Full Text

The Full Text of this article is available as a PDF (318.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Carles-Kinch K., Kreuzer K. N. RNA-DNA hybrid formation at a bacteriophage T4 replication origin. J Mol Biol. 1997 Mar 14;266(5):915–926. doi: 10.1006/jmbi.1996.0844. [DOI] [PubMed] [Google Scholar]
  2. Conkling M. A., Drake J. W. Isolation and characterization of conditional alleles of bacteriophage T4 genes uvsX and uvsY. Genetics. 1984 Aug;107(4):505–523. doi: 10.1093/genetics/107.4.505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cunningham R. P., Berger H. Mutations affecting genetic recombination in bacteriophage T4D. I. Pathway analysis. Virology. 1977 Jul 1;80(1):67–82. doi: 10.1016/0042-6822(77)90381-6. [DOI] [PubMed] [Google Scholar]
  4. Derr L. K., Drake J. W. Isolation and genetic characterization of new uvsW alleles of bacteriophage T4. Mol Gen Genet. 1990 Jul;222(2-3):257–264. doi: 10.1007/BF00633826. [DOI] [PubMed] [Google Scholar]
  5. Derr L. K., Kreuzer K. N. Expression and function of the uvsW gene of bacteriophage T4. J Mol Biol. 1990 Aug 5;214(3):643–656. doi: 10.1016/0022-2836(90)90283-R. [DOI] [PubMed] [Google Scholar]
  6. Flemming M., Deumling B., Kemper B. Function of gene 49 of bacteriophage T4 III. Isolation of Holliday structures from very fast-sedimenting DNA. Virology. 1993 Oct;196(2):910–913. doi: 10.1006/viro.1993.1557. [DOI] [PubMed] [Google Scholar]
  7. George J. W., Brosh R. M., Jr, Matson S. W. A dominant negative allele of the Escherichia coli uvrD gene encoding DNA helicase II. A biochemical and genetic characterization. J Mol Biol. 1994 Jan 14;235(2):424–435. doi: 10.1006/jmbi.1994.1003. [DOI] [PubMed] [Google Scholar]
  8. George J. W., Kreuzer K. N. Repair of double-strand breaks in bacteriophage T4 by a mechanism that involves extensive DNA replication. Genetics. 1996 Aug;143(4):1507–1520. doi: 10.1093/genetics/143.4.1507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gorbalenya A. E., Koonin E. V., Donchenko A. P., Blinov V. M. Two related superfamilies of putative helicases involved in replication, recombination, repair and expression of DNA and RNA genomes. Nucleic Acids Res. 1989 Jun 26;17(12):4713–4730. doi: 10.1093/nar/17.12.4713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hamlett N. V., Berger H. Mutations altering genetic recombination and repair of DNA in bacteriophage T4. Virology. 1975 Feb;63(2):539–567. doi: 10.1016/0042-6822(75)90326-8. [DOI] [PubMed] [Google Scholar]
  11. Hong X., Cadwell G. W., Kogoma T. Escherichia coli RecG and RecA proteins in R-loop formation. EMBO J. 1995 May 15;14(10):2385–2392. doi: 10.1002/j.1460-2075.1995.tb07233.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ikeda R. A., Ligman C. M., Warshamana S. T7 promoter contacts essential for promoter activity in vivo. Nucleic Acids Res. 1992 May 25;20(10):2517–2524. doi: 10.1093/nar/20.10.2517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Itaya M., Crouch R. J. A combination of RNase H (rnh) and recBCD or sbcB mutations in Escherichia coli K12 adversely affects growth. Mol Gen Genet. 1991 Jul;227(3):424–432. doi: 10.1007/BF00273933. [DOI] [PubMed] [Google Scholar]
  14. Kemper B., Brown D. T. Function of gene 49 of bacteriophage T4. II. Analysis of intracellular development and the structure of very fast-sedimenting DNA. J Virol. 1976 Jun;18(3):1000–1015. doi: 10.1128/jvi.18.3.1000-1015.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kogoma T., Hong X., Cadwell G. W., Barnard K. G., Asai T. Requirement of homologous recombination functions for viability of the Escherichia coli cell that lacks RNase HI and exonuclease V activities. Biochimie. 1993;75(1-2):89–99. doi: 10.1016/0300-9084(93)90029-r. [DOI] [PubMed] [Google Scholar]
  16. Kreuzer H. W., Kreuzer K. N. Integration of plasmids into the bacteriophage T4 genome. Genetics. 1994 Dec;138(4):983–992. doi: 10.1093/genetics/138.4.983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kreuzer K. N., Engman H. W., Yap W. Y. Tertiary initiation of replication in bacteriophage T4. Deletion of the overlapping uvsY promoter/replication origin from the phage genome. J Biol Chem. 1988 Aug 15;263(23):11348–11357. [PubMed] [Google Scholar]
  18. Lloyd R. G. Conjugational recombination in resolvase-deficient ruvC mutants of Escherichia coli K-12 depends on recG. J Bacteriol. 1991 Sep;173(17):5414–5418. doi: 10.1128/jb.173.17.5414-5418.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lloyd R. G., Sharples G. J. Dissociation of synthetic Holliday junctions by E. coli RecG protein. EMBO J. 1993 Jan;12(1):17–22. doi: 10.1002/j.1460-2075.1993.tb05627.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lloyd R. G., Sharples G. J. Processing of recombination intermediates by the RecG and RuvAB proteins of Escherichia coli. Nucleic Acids Res. 1993 Apr 25;21(8):1719–1725. doi: 10.1093/nar/21.8.1719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Mizuuchi K., Kemper B., Hays J., Weisberg R. A. T4 endonuclease VII cleaves holliday structures. Cell. 1982 Jun;29(2):357–365. doi: 10.1016/0092-8674(82)90152-0. [DOI] [PubMed] [Google Scholar]
  22. Mueller J. E., Clyman J., Huang Y. J., Parker M. M., Belfort M. Intron mobility in phage T4 occurs in the context of recombination-dependent DNA replication by way of multiple pathways. Genes Dev. 1996 Feb 1;10(3):351–364. doi: 10.1101/gad.10.3.351. [DOI] [PubMed] [Google Scholar]
  23. Parsons C. A., Kemper B., West S. C. Interaction of a four-way junction in DNA with T4 endonuclease VII. J Biol Chem. 1990 Jun 5;265(16):9285–9289. [PubMed] [Google Scholar]
  24. Salinas F., Kodadek T. Phage T4 homologous strand exchange: a DNA helicase, not the strand transferase, drives polar branch migration. Cell. 1995 Jul 14;82(1):111–119. doi: 10.1016/0092-8674(95)90057-8. [DOI] [PubMed] [Google Scholar]
  25. Selick H. E., Kreuzer K. N., Alberts B. M. The bacteriophage T4 insertion/substitution vector system. A method for introducing site-specific mutations into the virus chromosome. J Biol Chem. 1988 Aug 15;263(23):11336–11347. [PubMed] [Google Scholar]
  26. Studier F. W., Rosenberg A. H., Dunn J. J., Dubendorff J. W. Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 1990;185:60–89. doi: 10.1016/0076-6879(90)85008-c. [DOI] [PubMed] [Google Scholar]
  27. Studier F. W. Use of bacteriophage T7 lysozyme to improve an inducible T7 expression system. J Mol Biol. 1991 May 5;219(1):37–44. doi: 10.1016/0022-2836(91)90855-z. [DOI] [PubMed] [Google Scholar]
  28. Sung P., Higgins D., Prakash L., Prakash S. Mutation of lysine-48 to arginine in the yeast RAD3 protein abolishes its ATPase and DNA helicase activities but not the ability to bind ATP. EMBO J. 1988 Oct;7(10):3263–3269. doi: 10.1002/j.1460-2075.1988.tb03193.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Vincent S. D., Mahdi A. A., Lloyd R. G. The RecG branch migration protein of Escherichia coli dissociates R-loops. J Mol Biol. 1996 Dec 13;264(4):713–721. doi: 10.1006/jmbi.1996.0671. [DOI] [PubMed] [Google Scholar]
  30. Walker J. E., Saraste M., Runswick M. J., Gay N. J. Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1982;1(8):945–951. doi: 10.1002/j.1460-2075.1982.tb01276.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. West S. C. The RuvABC proteins and Holliday junction processing in Escherichia coli. J Bacteriol. 1996 Mar;178(5):1237–1241. doi: 10.1128/jb.178.5.1237-1241.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Whitby M. C., Ryder L., Lloyd R. G. Reverse branch migration of Holliday junctions by RecG protein: a new mechanism for resolution of intermediates in recombination and DNA repair. Cell. 1993 Oct 22;75(2):341–350. doi: 10.1016/0092-8674(93)80075-p. [DOI] [PubMed] [Google Scholar]
  33. Whitby M. C., Vincent S. D., Lloyd R. G. Branch migration of Holliday junctions: identification of RecG protein as a junction specific DNA helicase. EMBO J. 1994 Nov 1;13(21):5220–5228. doi: 10.1002/j.1460-2075.1994.tb06853.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Woodworth D. L., Kreuzer K. N. Bacteriophage T4 mutants hypersensitive to an antitumor agent that induces topoisomerase-DNA cleavage complexes. Genetics. 1996 Jul;143(3):1081–1090. doi: 10.1093/genetics/143.3.1081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Wu J. R., Yeh Y. C. New Late Gene, dar, Involved in DNA Replication of Bacteriophage T4 I. Isolation, Characterization, and Genetic Location. J Virol. 1975 May;15(5):1096–1106. doi: 10.1128/jvi.15.5.1096-1106.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Wu J. R., Yeh Y. C. New late gene, dar, involved in the replication of bacteriophage T4 DNA. II. Overproduction of DNA binding protein (gene 32 protein) and further characterization. J Virol. 1978 Jul;27(1):90–102. doi: 10.1128/jvi.27.1.90-102.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Wu J. R., Yeh Y. C. New late gene, dar, involved in the replication of bacteriophage T4 DNA. III. DNA replicative intermediates of T4 dar and a gene 59 mutant suppressed by dar. J Virol. 1978 Jul;27(1):103–117. doi: 10.1128/jvi.27.1.103-117.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Yonesaki T., Minagawa T. Studies on the recombination genes of bacteriophage T4: suppression of uvsX and uvsY mutations by uvsW mutations. Genetics. 1987 Feb;115(2):219–227. doi: 10.1093/genetics/115.2.219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Zavitz K. H., Marians K. J. ATPase-deficient mutants of the Escherichia coli DNA replication protein PriA are capable of catalyzing the assembly of active primosomes. J Biol Chem. 1992 Apr 5;267(10):6933–6940. [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES