Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1997 Jul 16;16(14):4163–4173. doi: 10.1093/emboj/16.14.4163

Metabolic inactivation of retinoic acid by a novel P450 differentially expressed in developing mouse embryos.

H Fujii 1, T Sato 1, S Kaneko 1, O Gotoh 1, Y Fujii-Kuriyama 1, K Osawa 1, S Kato 1, H Hamada 1
PMCID: PMC1170042  PMID: 9250660

Abstract

Retinoic acid (RA) is a physiological agent that has a wide range of biological activity and appears to regulate developmental programs of vertebrates. However, little is known about the molecular basis of its metabolism. Here we have identified a novel cytochrome P450 (P450RA) that specifically metabolizes RA. In vitro, P450RA converts all-trans RA into 5,8-epoxy all-trans RA. P450RA metabolizes other biologically active RAs such as 9-cis RA and 13-cis RA, but fails to metabolize their precursors, retinol and retinal. Overexpression of P450RA in cell culture renders the cells hyposensitive to all-trans RA. These functional tests in vitro and in vivo indicate that P450RA inactivates RA. The P450RA gene is not expressed uniformly but in a stage- and region-specific fashion during mouse development. The major expression domains in developing embryos include the posterior neural plate and neural crest cells for cranial ganglia. The expression of P450RA, however, is not necessarily inducible by excess RA. These results suggest that P450RA regulates the intracellular level of RA and may be involved in setting up the uneven distribution of active RA in mammalian embryos.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barua A. B., Gunning D. B., Olson J. A. Metabolism in vivo of all-trans-[11-3H]retinoic acid after an oral dose in rats. Characterization of retinoyl beta-glucuronide in the blood and other tissues. Biochem J. 1991 Jul 15;277(Pt 2):527–531. doi: 10.1042/bj2770527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bhat K., McBurney M. W., Hamada H. Functional cloning of mouse chromosomal loci specifically active in embryonal carcinoma stem cells. Mol Cell Biol. 1988 Aug;8(8):3251–3259. doi: 10.1128/mcb.8.8.3251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blomhoff R., Green M. H., Berg T., Norum K. R. Transport and storage of vitamin A. Science. 1990 Oct 19;250(4979):399–404. doi: 10.1126/science.2218545. [DOI] [PubMed] [Google Scholar]
  4. Brand N., Petkovich M., Krust A., Chambon P., de Thé H., Marchio A., Tiollais P., Dejean A. Identification of a second human retinoic acid receptor. Nature. 1988 Apr 28;332(6167):850–853. doi: 10.1038/332850a0. [DOI] [PubMed] [Google Scholar]
  5. Chambon P. The retinoid signaling pathway: molecular and genetic analyses. Semin Cell Biol. 1994 Apr;5(2):115–125. doi: 10.1006/scel.1994.1015. [DOI] [PubMed] [Google Scholar]
  6. Chen Y., Huang L., Russo A. F., Solursh M. Retinoic acid is enriched in Hensen's node and is developmentally regulated in the early chicken embryo. Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10056–10059. doi: 10.1073/pnas.89.21.10056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Durston A. J., Timmermans J. P., Hage W. J., Hendriks H. F., de Vries N. J., Heideveld M., Nieuwkoop P. D. Retinoic acid causes an anteroposterior transformation in the developing central nervous system. Nature. 1989 Jul 13;340(6229):140–144. doi: 10.1038/340140a0. [DOI] [PubMed] [Google Scholar]
  8. Giguere V., Ong E. S., Segui P., Evans R. M. Identification of a receptor for the morphogen retinoic acid. Nature. 1987 Dec 17;330(6149):624–629. doi: 10.1038/330624a0. [DOI] [PubMed] [Google Scholar]
  9. Heyman R. A., Mangelsdorf D. J., Dyck J. A., Stein R. B., Eichele G., Evans R. M., Thaller C. 9-cis retinoic acid is a high affinity ligand for the retinoid X receptor. Cell. 1992 Jan 24;68(2):397–406. doi: 10.1016/0092-8674(92)90479-v. [DOI] [PubMed] [Google Scholar]
  10. Kastner P., Grondona J. M., Mark M., Gansmuller A., LeMeur M., Decimo D., Vonesch J. L., Dollé P., Chambon P. Genetic analysis of RXR alpha developmental function: convergence of RXR and RAR signaling pathways in heart and eye morphogenesis. Cell. 1994 Sep 23;78(6):987–1003. doi: 10.1016/0092-8674(94)90274-7. [DOI] [PubMed] [Google Scholar]
  11. Kikuta Y., Kusunose E., Endo K., Yamamoto S., Sogawa K., Fujii-Kuriyama Y., Kusunose M. A novel form of cytochrome P-450 family 4 in human polymorphonuclear leukocytes. cDNA cloning and expression of leukotriene B4 omega-hydroxylase. J Biol Chem. 1993 May 5;268(13):9376–9380. [PubMed] [Google Scholar]
  12. Kizaki M., Ueno H., Yamazoe Y., Shimada M., Takayama N., Muto A., Matsushita H., Nakajima H., Morikawa M., Koeffler H. P. Mechanisms of retinoid resistance in leukemic cells: possible role of cytochrome P450 and P-glycoprotein. Blood. 1996 Jan 15;87(2):725–733. [PubMed] [Google Scholar]
  13. Kraft J. C., Schuh T., Juchau M., Kimelman D. The retinoid X receptor ligand, 9-cis-retinoic acid, is a potential regulator of early Xenopus development. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):3067–3071. doi: 10.1073/pnas.91.8.3067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lee Y. M., Osumi-Yamashita N., Ninomiya Y., Moon C. K., Eriksson U., Eto K. Retinoic acid stage-dependently alters the migration pattern and identity of hindbrain neural crest cells. Development. 1995 Mar;121(3):825–837. doi: 10.1242/dev.121.3.825. [DOI] [PubMed] [Google Scholar]
  15. Levin A. A., Sturzenbecker L. J., Kazmer S., Bosakowski T., Huselton C., Allenby G., Speck J., Kratzeisen C., Rosenberger M., Lovey A. 9-cis retinoic acid stereoisomer binds and activates the nuclear receptor RXR alpha. Nature. 1992 Jan 23;355(6358):359–361. doi: 10.1038/355359a0. [DOI] [PubMed] [Google Scholar]
  16. Lohnes D., Mark M., Mendelsohn C., Dollé P., Dierich A., Gorry P., Gansmuller A., Chambon P. Function of the retinoic acid receptors (RARs) during development (I). Craniofacial and skeletal abnormalities in RAR double mutants. Development. 1994 Oct;120(10):2723–2748. doi: 10.1242/dev.120.10.2723. [DOI] [PubMed] [Google Scholar]
  17. Mangelsdorf D. J., Ong E. S., Dyck J. A., Evans R. M. Nuclear receptor that identifies a novel retinoic acid response pathway. Nature. 1990 May 17;345(6272):224–229. doi: 10.1038/345224a0. [DOI] [PubMed] [Google Scholar]
  18. Martini R., Murray M. Participation of P450 3A enzymes in rat hepatic microsomal retinoic acid 4-hydroxylation. Arch Biochem Biophys. 1993 May 15;303(1):57–66. doi: 10.1006/abbi.1993.1255. [DOI] [PubMed] [Google Scholar]
  19. McCormick A. M., Napoli J. L., Schnoes H. K., DeLuca H. F. Isolation and identification of 5, 6-epoxyretinoic acid: a biologically active metabolite of retinoic acid. Biochemistry. 1978 Sep 19;17(19):4085–4090. doi: 10.1021/bi00612a033. [DOI] [PubMed] [Google Scholar]
  20. Mizushima S., Nagata S. pEF-BOS, a powerful mammalian expression vector. Nucleic Acids Res. 1990 Sep 11;18(17):5322–5322. doi: 10.1093/nar/18.17.5322. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Nebert D. W., Gonzalez F. J. P450 genes: structure, evolution, and regulation. Annu Rev Biochem. 1987;56:945–993. doi: 10.1146/annurev.bi.56.070187.004501. [DOI] [PubMed] [Google Scholar]
  22. Okamoto K., Okazawa H., Okuda A., Sakai M., Muramatsu M., Hamada H. A novel octamer binding transcription factor is differentially expressed in mouse embryonic cells. Cell. 1990 Feb 9;60(3):461–472. doi: 10.1016/0092-8674(90)90597-8. [DOI] [PubMed] [Google Scholar]
  23. Okazawa H., Okamoto K., Ishino F., Ishino-Kaneko T., Takeda S., Toyoda Y., Muramatsu M., Hamada H. The oct3 gene, a gene for an embryonic transcription factor, is controlled by a retinoic acid repressible enhancer. EMBO J. 1991 Oct;10(10):2997–3005. doi: 10.1002/j.1460-2075.1991.tb07850.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Petkovich M., Brand N. J., Krust A., Chambon P. A human retinoic acid receptor which belongs to the family of nuclear receptors. Nature. 1987 Dec 3;330(6147):444–450. doi: 10.1038/330444a0. [DOI] [PubMed] [Google Scholar]
  25. Pijnappel W. W., Hendriks H. F., Folkers G. E., van den Brink C. E., Dekker E. J., Edelenbosch C., van der Saag P. T., Durston A. J. The retinoid ligand 4-oxo-retinoic acid is a highly active modulator of positional specification. Nature. 1993 Nov 25;366(6453):340–344. doi: 10.1038/366340a0. [DOI] [PubMed] [Google Scholar]
  26. Reynolds N. J., Fisher G. J., Griffiths C. E., Tavakkol A., Talwar H. S., Rowse P. E., Hamilton T. A., Voorhees J. J. Retinoic acid metabolites exhibit biological activity in human keratinocytes, mouse melanoma cells and hairless mouse skin in vivo. J Pharmacol Exp Ther. 1993 Sep;266(3):1636–1642. [PubMed] [Google Scholar]
  27. Roman L. J., Palmer C. N., Clark J. E., Muerhoff A. S., Griffin K. J., Johnson E. F., Masters B. S. Expression of rabbit cytochromes P4504A which catalyze the omega-hydroxylation of arachidonic acid, fatty acids, and prostaglandins. Arch Biochem Biophys. 1993 Nov 15;307(1):57–65. doi: 10.1006/abbi.1993.1560. [DOI] [PubMed] [Google Scholar]
  28. Ruberte E., Dolle P., Chambon P., Morriss-Kay G. Retinoic acid receptors and cellular retinoid binding proteins. II. Their differential pattern of transcription during early morphogenesis in mouse embryos. Development. 1991 Jan;111(1):45–60. doi: 10.1242/dev.111.1.45. [DOI] [PubMed] [Google Scholar]
  29. Thaller C., Eichele G. Identification and spatial distribution of retinoids in the developing chick limb bud. Nature. 1987 Jun 18;327(6123):625–628. doi: 10.1038/327625a0. [DOI] [PubMed] [Google Scholar]
  30. White J. A., Guo Y. D., Baetz K., Beckett-Jones B., Bonasoro J., Hsu K. E., Dilworth F. J., Jones G., Petkovich M. Identification of the retinoic acid-inducible all-trans-retinoic acid 4-hydroxylase. J Biol Chem. 1996 Nov 22;271(47):29922–29927. doi: 10.1074/jbc.271.47.29922. [DOI] [PubMed] [Google Scholar]
  31. Yasuda Y., Konishi H., Kihara T., Tanimura T. Discontinuity of primary and secondary neural tube in spina bifida induced by retinoic acid in mice. Teratology. 1990 Mar;41(3):257–274. doi: 10.1002/tera.1420410303. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES