Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1997 Jul 16;16(14):4261–4266. doi: 10.1093/emboj/16.14.4261

Anionic phospholipids are determinants of membrane protein topology.

W van Klompenburg 1, I Nilsson 1, G von Heijne 1, B de Kruijff 1
PMCID: PMC1170051  PMID: 9250669

Abstract

The orientation of many membrane proteins is determined by the asymmetric distribution of positively charged amino acid residues in cytoplasmic and translocated loops. The positive-inside rule states that loops with large amounts of these residues tend to have cytoplasmic locations. Orientations of constructs derived from the inner membrane protein leader peptidase from Escherichia coli were found to depend on the anionic phospholipid content of the membrane. Lowering the contents of anionic phospholipids facilitated membrane passage of positively charged loops. On the other hand, elevated contents of acidic phospholipids in the membrane rendered translocation more sensitive to positively charged residues. The results demonstrate that anionic lipids are determinants of membrane protein topology and suggest that interactions between negatively charged phospholipids and positively charged amino acid residues contribute to the orientation of membrane proteins.

Full Text

The Full Text of this article is available as a PDF (319.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersson H., von Heijne G. A 30-residue-long "export initiation domain" adjacent to the signal sequence is critical for protein translocation across the inner membrane of Escherichia coli. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9751–9754. doi: 10.1073/pnas.88.21.9751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Andersson H., von Heijne G. Sec dependent and sec independent assembly of E. coli inner membrane proteins: the topological rules depend on chain length. EMBO J. 1993 Feb;12(2):683–691. doi: 10.1002/j.1460-2075.1993.tb05702.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Douce R., Joyard J. Biochemistry and function of the plastid envelope. Annu Rev Cell Biol. 1990;6:173–216. doi: 10.1146/annurev.cb.06.110190.001133. [DOI] [PubMed] [Google Scholar]
  4. Gavel Y., Steppuhn J., Herrmann R., von Heijne G. The 'positive-inside rule' applies to thylakoid membrane proteins. FEBS Lett. 1991 Apr 22;282(1):41–46. doi: 10.1016/0014-5793(91)80440-e. [DOI] [PubMed] [Google Scholar]
  5. Gavel Y., von Heijne G. The distribution of charged amino acids in mitochondrial inner-membrane proteins suggests different modes of membrane integration for nuclearly and mitochondrially encoded proteins. Eur J Biochem. 1992 May 1;205(3):1207–1215. doi: 10.1111/j.1432-1033.1992.tb16892.x. [DOI] [PubMed] [Google Scholar]
  6. Hovius R., Lambrechts H., Nicolay K., de Kruijff B. Improved methods to isolate and subfractionate rat liver mitochondria. Lipid composition of the inner and outer membrane. Biochim Biophys Acta. 1990 Jan 29;1021(2):217–226. doi: 10.1016/0005-2736(90)90036-n. [DOI] [PubMed] [Google Scholar]
  7. Krishtalik L. I., Cramer W. A. On the physical basis for the cis-positive rule describing protein orientation in biological membranes. FEBS Lett. 1995 Aug 7;369(2-3):140–143. doi: 10.1016/0014-5793(95)00756-y. [DOI] [PubMed] [Google Scholar]
  8. Kusters R., Dowhan W., de Kruijff B. Negatively charged phospholipids restore prePhoE translocation across phosphatidylglycerol-depleted Escherichia coli inner membranes. J Biol Chem. 1991 May 15;266(14):8659–8662. [PubMed] [Google Scholar]
  9. Lee J. I., Kuhn A., Dalbey R. E. Distinct domains of an oligotopic membrane protein are Sec-dependent and Sec-independent for membrane insertion. J Biol Chem. 1992 Jan 15;267(2):938–943. [PubMed] [Google Scholar]
  10. Manoil C., Beckwith J. TnphoA: a transposon probe for protein export signals. Proc Natl Acad Sci U S A. 1985 Dec;82(23):8129–8133. doi: 10.1073/pnas.82.23.8129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Nilsson I., von Heijne G. Fine-tuning the topology of a polytopic membrane protein: role of positively and negatively charged amino acids. Cell. 1990 Sep 21;62(6):1135–1141. doi: 10.1016/0092-8674(90)90390-z. [DOI] [PubMed] [Google Scholar]
  12. Rietveld A. G., Verkleij A. J., de Kruijff B. A freeze-fracture study of the membrane morphology of phosphatidylethanolamine-deficient Escherichia coli cells. Biochim Biophys Acta. 1997 Mar 13;1324(2):263–272. doi: 10.1016/s0005-2736(96)00232-5. [DOI] [PubMed] [Google Scholar]
  13. Shibuya I., Miyazaki C., Ohta A. Alteration of phospholipid composition by combined defects in phosphatidylserine and cardiolipin synthases and physiological consequences in Escherichia coli. J Bacteriol. 1985 Mar;161(3):1086–1092. doi: 10.1128/jb.161.3.1086-1092.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Sipos L., von Heijne G. Predicting the topology of eukaryotic membrane proteins. Eur J Biochem. 1993 May 1;213(3):1333–1340. doi: 10.1111/j.1432-1033.1993.tb17885.x. [DOI] [PubMed] [Google Scholar]
  15. van Klompenburg W., Whitley P., Diemel R., von Heijne G., de Kruijff B. A quantitative assay to determine the amount of signal peptidase I in E. coli and the orientation of membrane vesicles. Mol Membr Biol. 1995 Oct-Dec;12(4):349–353. doi: 10.3109/09687689509072437. [DOI] [PubMed] [Google Scholar]
  16. van de Waart P., Bruls H., Hemker H. C., Lindhout T. Interaction of bovine blood clotting factor Va and its subunits with phospholipid vesicles. Biochemistry. 1983 May 10;22(10):2427–2432. doi: 10.1021/bi00279a019. [DOI] [PubMed] [Google Scholar]
  17. van der Goot F. G., Didat N., Pattus F., Dowhan W., Letellier L. Role of acidic lipids in the translocation and channel activity of colicins A and N in Escherichia coli cells. Eur J Biochem. 1993 Apr 1;213(1):217–221. doi: 10.1111/j.1432-1033.1993.tb17751.x. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES