Abstract
Glucosylated oligomannose N-linked oligosaccharides (Glc(x)Man9GlcNAc2 where x = 1-3) are not normally found on mature glycoproteins but are involved in the early stages of glycoprotein biosynthesis and folding as (i) recognition elements during protein N-glycosylation and chaperone recognition and (ii) substrates in the initial steps of N-glycan processing. By inhibiting the first steps of glycan processing in CHO cells using the alpha-glucosidase inhibitor N-butyl-deoxynojirimycin, we have produced sufficient Glc3Man7GlcNAc2 for structural analysis by nuclear magnetic resonance (NMR) spectroscopy. Our results show the glucosyl cap to have a single, well-defined conformation independent of the rest of the saccharide. Comparison with the conformation of Man9GlcNAc2, previously determined by NMR and molecular dynamics, shows the mannose residues to be largely unaffected by the presence of the glucosyl cap. Sequential enzymatic cleavage of the glucose residues does not affect the conformation of the remaining saccharide. Modelling of the Glc3Man9GlcNAc2, Glc2Man9GlcNAc2 and Glc1Man9GlcNAc2 conformations shows the glucose residues to be fully accessible for recognition. A more detailed analysis of the conformations allows potential recognition epitopes on the glycans to be identified and can form the basis for understanding the specificity of the glucosidases and chaperones (such as calnexin) that recognize these glycans, with implications for their mechanisms of action.
Full Text
The Full Text of this article is available as a PDF (482.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alonso J. M., Santa-Cecilia A., Calvo P. Glucosidase II from rat liver microsomes. Kinetic model for binding and hydrolysis. Biochem J. 1991 Sep 15;278(Pt 3):721–727. doi: 10.1042/bj2780721. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Alvarado E., Nukada T., Ogawa T., Ballou C. E. Conformation of the glucotriose unit in the lipid-linked oligosaccharide precursor for protein glycosylation. Biochemistry. 1991 Jan 29;30(4):881–886. doi: 10.1021/bi00218a001. [DOI] [PubMed] [Google Scholar]
- Arunachalam B., Cresswell P. Molecular requirements for the interaction of class II major histocompatibility complex molecules and invariant chain with calnexin. J Biol Chem. 1995 Feb 10;270(6):2784–2790. doi: 10.1074/jbc.270.6.2784. [DOI] [PubMed] [Google Scholar]
- Bause E., Breuer W., Schweden J., Roeser R., Geyer R. Effect of substrate structure on the activity of Man9-mannosidase from pig liver involved in N-linked oligosaccharide processing. Eur J Biochem. 1992 Sep 1;208(2):451–457. doi: 10.1111/j.1432-1033.1992.tb17207.x. [DOI] [PubMed] [Google Scholar]
- Bergeron J. J., Brenner M. B., Thomas D. Y., Williams D. B. Calnexin: a membrane-bound chaperone of the endoplasmic reticulum. Trends Biochem Sci. 1994 Mar;19(3):124–128. doi: 10.1016/0968-0004(94)90205-4. [DOI] [PubMed] [Google Scholar]
- Bigge J. C., Patel T. P., Bruce J. A., Goulding P. N., Charles S. M., Parekh R. B. Nonselective and efficient fluorescent labeling of glycans using 2-amino benzamide and anthranilic acid. Anal Biochem. 1995 Sep 20;230(2):229–238. doi: 10.1006/abio.1995.1468. [DOI] [PubMed] [Google Scholar]
- Brada D., Dubach U. C. Isolation of a homogeneous glucosidase II from pig kidney microsomes. Eur J Biochem. 1984 May 15;141(1):149–156. doi: 10.1111/j.1432-1033.1984.tb08169.x. [DOI] [PubMed] [Google Scholar]
- Breuer W., Bause E. Oligosaccharyl transferase is a constitutive component of an oligomeric protein complex from pig liver endoplasmic reticulum. Eur J Biochem. 1995 Mar 15;228(3):689–696. [PubMed] [Google Scholar]
- Dwek Raymond A. Glycobiology: Toward Understanding the Function of Sugars. Chem Rev. 1996 Mar 28;96(2):683–720. doi: 10.1021/cr940283b. [DOI] [PubMed] [Google Scholar]
- Fischer P. B., Karlsson G. B., Butters T. D., Dwek R. A., Platt F. M. N-butyldeoxynojirimycin-mediated inhibition of human immunodeficiency virus entry correlates with changes in antibody recognition of the V1/V2 region of gp120. J Virol. 1996 Oct;70(10):7143–7152. doi: 10.1128/jvi.70.10.7143-7152.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guile G. R., Rudd P. M., Wing D. R., Prime S. B., Dwek R. A. A rapid high-resolution high-performance liquid chromatographic method for separating glycan mixtures and analyzing oligosaccharide profiles. Anal Biochem. 1996 Sep 5;240(2):210–226. doi: 10.1006/abio.1996.0351. [DOI] [PubMed] [Google Scholar]
- Hebert D. N., Foellmer B., Helenius A. Glucose trimming and reglucosylation determine glycoprotein association with calnexin in the endoplasmic reticulum. Cell. 1995 May 5;81(3):425–433. doi: 10.1016/0092-8674(95)90395-x. [DOI] [PubMed] [Google Scholar]
- Helenius A. How N-linked oligosaccharides affect glycoprotein folding in the endoplasmic reticulum. Mol Biol Cell. 1994 Mar;5(3):253–265. doi: 10.1091/mbc.5.3.253. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kalz-Füller B., Bieberich E., Bause E. Cloning and expression of glucosidase I from human hippocampus. Eur J Biochem. 1995 Jul 15;231(2):344–351. doi: 10.1111/j.1432-1033.1995.tb20706.x. [DOI] [PubMed] [Google Scholar]
- Karlsson G. B., Butters T. D., Dwek R. A., Platt F. M. Effects of the imino sugar N-butyldeoxynojirimycin on the N-glycosylation of recombinant gp120. J Biol Chem. 1993 Jan 5;268(1):570–576. [PubMed] [Google Scholar]
- Kornfeld S., Gregory W., Chapman A. Class E Thy-1 negative mouse lymphoma cells utilize an alternate pathway of oligosaccharide processing to synthesize complex-type oligosaccharides. J Biol Chem. 1979 Nov 25;254(22):11649–11654. [PubMed] [Google Scholar]
- Mehta A., Lu X., Block T. M., Blumberg B. S., Dwek R. A. Hepatitis B virus (HBV) envelope glycoproteins vary drastically in their sensitivity to glycan processing: evidence that alteration of a single N-linked glycosylation site can regulate HBV secretion. Proc Natl Acad Sci U S A. 1997 Mar 4;94(5):1822–1827. doi: 10.1073/pnas.94.5.1822. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ou W. J., Cameron P. H., Thomas D. Y., Bergeron J. J. Association of folding intermediates of glycoproteins with calnexin during protein maturation. Nature. 1993 Aug 26;364(6440):771–776. doi: 10.1038/364771a0. [DOI] [PubMed] [Google Scholar]
- Parodi A. J. N-glycosylation in trypanosomatid protozoa. Glycobiology. 1993 Jun;3(3):193–199. doi: 10.1093/glycob/3.3.193. [DOI] [PubMed] [Google Scholar]
- Patel T., Bruce J., Merry A., Bigge C., Wormald M., Jaques A., Parekh R. Use of hydrazine to release in intact and unreduced form both N- and O-linked oligosaccharides from glycoproteins. Biochemistry. 1993 Jan 19;32(2):679–693. doi: 10.1021/bi00053a037. [DOI] [PubMed] [Google Scholar]
- Rodan A. R., Simons J. F., Trombetta E. S., Helenius A. N-linked oligosaccharides are necessary and sufficient for association of glycosylated forms of bovine RNase with calnexin and calreticulin. EMBO J. 1996 Dec 16;15(24):6921–6930. [PMC free article] [PubMed] [Google Scholar]
- Sousa M. C., Ferrero-Garcia M. A., Parodi A. J. Recognition of the oligosaccharide and protein moieties of glycoproteins by the UDP-Glc:glycoprotein glucosyltransferase. Biochemistry. 1992 Jan 14;31(1):97–105. doi: 10.1021/bi00116a015. [DOI] [PubMed] [Google Scholar]
- Spiro R. G., Zhu Q., Bhoyroo V., Söling H. D. Definition of the lectin-like properties of the molecular chaperone, calreticulin, and demonstration of its copurification with endomannosidase from rat liver Golgi. J Biol Chem. 1996 May 10;271(19):11588–11594. doi: 10.1074/jbc.271.19.11588. [DOI] [PubMed] [Google Scholar]
- Trombetta E. S., Simons J. F., Helenius A. Endoplasmic reticulum glucosidase II is composed of a catalytic subunit, conserved from yeast to mammals, and a tightly bound noncatalytic HDEL-containing subunit. J Biol Chem. 1996 Nov 1;271(44):27509–27516. doi: 10.1074/jbc.271.44.27509. [DOI] [PubMed] [Google Scholar]
- Verostek M. F., Atkinson P. H., Trimble R. B. Glycoprotein biosynthesis in the alg3 Saccharomyces cerevisiae mutant. I. Role of glucose in the initial glycosylation of invertase in the endoplasmic reticulum. J Biol Chem. 1993 Jun 5;268(16):12095–12103. [PubMed] [Google Scholar]
- Ware F. E., Vassilakos A., Peterson P. A., Jackson M. R., Lehrman M. A., Williams D. B. The molecular chaperone calnexin binds Glc1Man9GlcNAc2 oligosaccharide as an initial step in recognizing unfolded glycoproteins. J Biol Chem. 1995 Mar 3;270(9):4697–4704. doi: 10.1074/jbc.270.9.4697. [DOI] [PubMed] [Google Scholar]
- Wing D. R., Rademacher T. W., Field M. C., Dwek R. A., Schmitz B., Thor G., Schachner M. Use of large-scale hydrazinolysis in the preparation of N-linked oligosaccharide libraries: application to brain tissue. Glycoconj J. 1992 Dec;9(6):293–301. doi: 10.1007/BF00731089. [DOI] [PubMed] [Google Scholar]
- Wooten E. W., Edge C. J., Bazzo R., Dwek R. A., Rademacher T. W. Uncertainties in structural determinations of oligosaccharide conformation, using measurements of nuclear Overhauser effects. Carbohydr Res. 1990 Aug 1;203(1):13–17. doi: 10.1016/0008-6215(90)80041-z. [DOI] [PubMed] [Google Scholar]
- Wormald M. R., Edge C. J. The systematic use of negative nuclear Overhauser constraints in the determination of oligosaccharide conformations: application to sialyl-Lewis X. Carbohydr Res. 1993 Aug 17;246:337–344. doi: 10.1016/0008-6215(93)84045-8. [DOI] [PubMed] [Google Scholar]
- Wormald M. R., Wooten E. W., Bazzo R., Edge C. J., Feinstein A., Rademacher T. W., Dwek R. A. The conformational effects of N-glycosylation on the tailpiece from serum IgM. Eur J Biochem. 1991 May 23;198(1):131–139. doi: 10.1111/j.1432-1033.1991.tb15995.x. [DOI] [PubMed] [Google Scholar]