Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1997 Jul 16;16(14):4352–4360. doi: 10.1093/emboj/16.14.4352

Cell type-specific chromatin organization of the region that governs directionality of yeast mating type switching.

K Weiss 1, R T Simpson 1
PMCID: PMC1170061  PMID: 9250679

Abstract

Switching of mating type in Saccharomyces cerevisiae is directional; MAT alpha cells recombine to transfer information from HMRa while MATa cells switch using the silent cassette at HML alpha. Genetic analysis recently has defined a 700 bp recombination enhancer approximately 29 kb from the left end of chromosome III that is necessary for directionality. The chromatin structure of this region differs strikingly in a- and alpha-cells. Mat alpha2p organizes a 3.7 kb chromatin domain that opposes interaction of trans-acting proteins with the enhancer. In a-cells lacking the alpha2 repressor, two footprinted regions flank an approximately 100 bp section having a unique DNA structure. This structural signature probably reflects interactions of proteins that result in directional mating type switching.

Full Text

The Full Text of this article is available as a PDF (430.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Axelrod J. D., Majors J. An improved method for photofootprinting yeast genes in vivo using Taq polymerase. Nucleic Acids Res. 1989 Jan 11;17(1):171–183. doi: 10.1093/nar/17.1.171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cooper J. P., Roth S. Y., Simpson R. T. The global transcriptional regulators, SSN6 and TUP1, play distinct roles in the establishment of a repressive chromatin structure. Genes Dev. 1994 Jun 15;8(12):1400–1410. doi: 10.1101/gad.8.12.1400. [DOI] [PubMed] [Google Scholar]
  3. Cuatrecasas P., Fuchs S., Anfinsen C. B. Catalytic properties and specificity of the extracellular nuclease of Staphylococcus aureus. J Biol Chem. 1967 Apr 10;242(7):1541–1547. [PubMed] [Google Scholar]
  4. Defoor E., Debrabandere R., Keyers B., Voet M., Volckaert G. Nucleotide sequence of D10B, a BamHI fragment on the small-ring chromosome III of Saccharomyces cerevisiae. Yeast. 1992 Aug;8(8):681–687. doi: 10.1002/yea.320080813. [DOI] [PubMed] [Google Scholar]
  5. Drew H. R. Structural specificities of five commonly used DNA nucleases. J Mol Biol. 1984 Jul 15;176(4):535–557. doi: 10.1016/0022-2836(84)90176-1. [DOI] [PubMed] [Google Scholar]
  6. Flick J. T., Eissenberg J. C., Elgin S. C. Micrococcal nuclease as a DNA structural probe: its recognition sequences, their genomic distribution and correlation with DNA structure determinants. J Mol Biol. 1986 Aug 20;190(4):619–633. doi: 10.1016/0022-2836(86)90247-0. [DOI] [PubMed] [Google Scholar]
  7. Gerring S. L., Spencer F., Hieter P. The CHL 1 (CTF 1) gene product of Saccharomyces cerevisiae is important for chromosome transmission and normal cell cycle progression in G2/M. EMBO J. 1990 Dec;9(13):4347–4358. doi: 10.1002/j.1460-2075.1990.tb07884.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hicks J. B., Herskowitz I. Interconversion of Yeast Mating Types I. Direct Observations of the Action of the Homothallism (HO) Gene. Genetics. 1976 Jun;83(2):245–258. doi: 10.1093/genetics/83.2.245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jensen R. E., Herskowitz I. Directionality and regulation of cassette substitution in yeast. Cold Spring Harb Symp Quant Biol. 1984;49:97–104. doi: 10.1101/sqb.1984.049.01.013. [DOI] [PubMed] [Google Scholar]
  10. Johnson A. D., Herskowitz I. A repressor (MAT alpha 2 Product) and its operator control expression of a set of cell type specific genes in yeast. Cell. 1985 Aug;42(1):237–247. doi: 10.1016/s0092-8674(85)80119-7. [DOI] [PubMed] [Google Scholar]
  11. Keleher C. A., Redd M. J., Schultz J., Carlson M., Johnson A. D. Ssn6-Tup1 is a general repressor of transcription in yeast. Cell. 1992 Feb 21;68(4):709–719. doi: 10.1016/0092-8674(92)90146-4. [DOI] [PubMed] [Google Scholar]
  12. Kurihara L. J., Stewart B. G., Gammie A. E., Rose M. D. Kar4p, a karyogamy-specific component of the yeast pheromone response pathway. Mol Cell Biol. 1996 Aug;16(8):3990–4002. doi: 10.1128/mcb.16.8.3990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Loo S., Laurenson P., Foss M., Dillin A., Rine J. Roles of ABF1, NPL3, and YCL54 in silencing in Saccharomyces cerevisiae. Genetics. 1995 Nov;141(3):889–902. doi: 10.1093/genetics/141.3.889. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Murphy M. R., Shimizu M., Roth S. Y., Dranginis A. M., Simpson R. T. DNA-protein interactions at the S.cerevisiae alpha 2 operator in vivo. Nucleic Acids Res. 1993 Jul 11;21(14):3295–3300. doi: 10.1093/nar/21.14.3295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Oliver S. G., van der Aart Q. J., Agostoni-Carbone M. L., Aigle M., Alberghina L., Alexandraki D., Antoine G., Anwar R., Ballesta J. P., Benit P. The complete DNA sequence of yeast chromosome III. Nature. 1992 May 7;357(6373):38–46. doi: 10.1038/357038a0. [DOI] [PubMed] [Google Scholar]
  16. Pehrson J. R. Probing the conformation of nucleosome linker DNA in situ with pyrimidine dimer formation. J Biol Chem. 1995 Sep 22;270(38):22440–22444. [PubMed] [Google Scholar]
  17. Redd M. J., Stark M. R., Johnson A. D. Accessibility of alpha 2-repressed promoters to the activator Gal4. Mol Cell Biol. 1996 Jun;16(6):2865–2869. doi: 10.1128/mcb.16.6.2865. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Rine J., Jensen R., Hagen D., Blair L., Herskowitz I. Pattern of switching and fate of the replaced cassette in yeast mating-type interconversion. Cold Spring Harb Symp Quant Biol. 1981;45(Pt 2):951–960. doi: 10.1101/sqb.1981.045.01.112. [DOI] [PubMed] [Google Scholar]
  19. Roth S. Y., Dean A., Simpson R. T. Yeast alpha 2 repressor positions nucleosomes in TRP1/ARS1 chromatin. Mol Cell Biol. 1990 May;10(5):2247–2260. doi: 10.1128/mcb.10.5.2247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Roth S. Y., Simpson R. T. Yeast minichromosomes. Methods Cell Biol. 1991;35:289–314. [PubMed] [Google Scholar]
  21. Scheffler I. E., Elson E. L., Baldwin R. L. Helix formation by dAT oligomers. I. Hairpin and straight-chain helices. J Mol Biol. 1968 Sep 28;36(3):291–304. doi: 10.1016/0022-2836(68)90156-3. [DOI] [PubMed] [Google Scholar]
  22. Shimizu M., Roth S. Y., Szent-Gyorgyi C., Simpson R. T. Nucleosomes are positioned with base pair precision adjacent to the alpha 2 operator in Saccharomyces cerevisiae. EMBO J. 1991 Oct;10(10):3033–3041. doi: 10.1002/j.1460-2075.1991.tb07854.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Simpson R. T. Nucleosome positioning can affect the function of a cis-acting DNA element in vivo. Nature. 1990 Jan 25;343(6256):387–389. doi: 10.1038/343387a0. [DOI] [PubMed] [Google Scholar]
  24. Simpson R. T., Roth S. Y., Morse R. H., Patterton H. G., Cooper J. P., Murphy M., Kladde M. P., Shimizu M. Nucleosome positioning and transcription. Cold Spring Harb Symp Quant Biol. 1993;58:237–245. doi: 10.1101/sqb.1993.058.01.028. [DOI] [PubMed] [Google Scholar]
  25. Szent-Gyorgyi C., Isenberg I. The organization of oligonucleosomes in yeast. Nucleic Acids Res. 1983 Jun 11;11(11):3717–3736. doi: 10.1093/nar/11.11.3717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Szeto L., Broach J. R. Role of alpha2 protein in donor locus selection during mating type interconversion. Mol Cell Biol. 1997 Feb;17(2):751–759. doi: 10.1128/mcb.17.2.751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Weiler K. S., Broach J. R. Donor locus selection during Saccharomyces cerevisiae mating type interconversion responds to distant regulatory signals. Genetics. 1992 Dec;132(4):929–942. doi: 10.1093/genetics/132.4.929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Weiler K. S., Szeto L., Broach J. R. Mutations affecting donor preference during mating type interconversion in Saccharomyces cerevisiae. Genetics. 1995 Apr;139(4):1495–1510. doi: 10.1093/genetics/139.4.1495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Williams F. E., Trumbly R. J. Characterization of TUP1, a mediator of glucose repression in Saccharomyces cerevisiae. Mol Cell Biol. 1990 Dec;10(12):6500–6511. doi: 10.1128/mcb.10.12.6500. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Wu X., Haber J. E. A 700 bp cis-acting region controls mating-type dependent recombination along the entire left arm of yeast chromosome III. Cell. 1996 Oct 18;87(2):277–285. doi: 10.1016/s0092-8674(00)81345-8. [DOI] [PubMed] [Google Scholar]
  31. Wu X., Haber J. E. MATa donor preference in yeast mating-type switching: activation of a large chromosomal region for recombination. Genes Dev. 1995 Aug 1;9(15):1922–1932. doi: 10.1101/gad.9.15.1922. [DOI] [PubMed] [Google Scholar]
  32. Wu X., Moore J. K., Haber J. E. Mechanism of MAT alpha donor preference during mating-type switching of Saccharomyces cerevisiae. Mol Cell Biol. 1996 Feb;16(2):657–668. doi: 10.1128/mcb.16.2.657. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES