Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1997 Jul 16;16(14):4412–4420. doi: 10.1093/emboj/16.14.4412

The T3R alpha gene encoding a thyroid hormone receptor is essential for post-natal development and thyroid hormone production.

A Fraichard 1, O Chassande 1, M Plateroti 1, J P Roux 1, J Trouillas 1, C Dehay 1, C Legrand 1, K Gauthier 1, M Kedinger 1, L Malaval 1, B Rousset 1, J Samarut 1
PMCID: PMC1170067  PMID: 9250685

Abstract

The diverse functions of thyroid hormones are thought to be mediated by two nuclear receptors, T3R alpha1 and T3R beta, encoded by the genes T3R alpha and T3R beta respectively. The T3R alpha gene also produces a non-ligand-binding protein T3R alpha2. The in vivo functions of these receptors are still unclear. We describe here the homozygous inactivation of the T3R alpha gene which abrogates the production of both T3R alpha1 and T3R alpha2 isoforms and that leads to death in mice within 5 weeks after birth. After 2 weeks of life, the homozygous mice become progressively hypothyroidic and exhibit a growth arrest. Small intestine and bones showed a strongly delayed maturation. In contrast to the negative regulatory function of the T3R beta gene on thyroid hormone production, our data show that the T3R alpha gene products are involved in up-regulation of thyroid hormone production at weaning time. Thus, thyroid hormone production might be balanced through a positive T3R alpha and a negative T3R beta pathway. The abnormal phenotypes observed on the homozygous mutant mice strongly suggest that the T3R alpha gene is essential for the transformation of a mother-dependent pup to an 'adult' mouse. These data define crucial in vivo functions for thyroid hormones through a T3R alpha pathway during post-natal development.

Full Text

The Full Text of this article is available as a PDF (767.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Damm K., Thompson C. C., Evans R. M. Protein encoded by v-erbA functions as a thyroid-hormone receptor antagonist. Nature. 1989 Jun 22;339(6226):593–597. doi: 10.1038/339593a0. [DOI] [PubMed] [Google Scholar]
  2. Forrest D., Hanebuth E., Smeyne R. J., Everds N., Stewart C. L., Wehner J. M., Curran T. Recessive resistance to thyroid hormone in mice lacking thyroid hormone receptor beta: evidence for tissue-specific modulation of receptor function. EMBO J. 1996 Jun 17;15(12):3006–3015. [PMC free article] [PubMed] [Google Scholar]
  3. Forrest D., Sjöberg M., Vennström B. Contrasting developmental and tissue-specific expression of alpha and beta thyroid hormone receptor genes. EMBO J. 1990 May;9(5):1519–1528. doi: 10.1002/j.1460-2075.1990.tb08270.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gandrillon O., Ferrand N., Michaille J. J., Roze L., Zile M. H., Samarut J. c-erbA alpha/T3R and RARs control commitment of hematopoietic self-renewing progenitor cells to apoptosis or differentiation and are antagonized by the v-erbA oncogene. Oncogene. 1994 Mar;9(3):749–758. [PubMed] [Google Scholar]
  5. Isozaki K., Hirota S., Nakama A., Miyagawa J., Shinomura Y., Xu Z., Nomura S., Kitamura Y. Disturbed intestinal movement, bile reflux to the stomach, and deficiency of c-kit-expressing cells in Ws/Ws mutant rats. Gastroenterology. 1995 Aug;109(2):456–464. doi: 10.1016/0016-5085(95)90333-x. [DOI] [PubMed] [Google Scholar]
  6. Koenig R. J., Lazar M. A., Hodin R. A., Brent G. A., Larsen P. R., Chin W. W., Moore D. D. Inhibition of thyroid hormone action by a non-hormone binding c-erbA protein generated by alternative mRNA splicing. Nature. 1989 Feb 16;337(6208):659–661. doi: 10.1038/337659a0. [DOI] [PubMed] [Google Scholar]
  7. Laudet V., Hänni C., Coll J., Catzeflis F., Stéhelin D. Evolution of the nuclear receptor gene superfamily. EMBO J. 1992 Mar;11(3):1003–1013. doi: 10.1002/j.1460-2075.1992.tb05139.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Mangelsdorf D. J., Thummel C., Beato M., Herrlich P., Schütz G., Umesono K., Blumberg B., Kastner P., Mark M., Chambon P. The nuclear receptor superfamily: the second decade. Cell. 1995 Dec 15;83(6):835–839. doi: 10.1016/0092-8674(95)90199-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Mitsuhashi T., Tennyson G. E., Nikodem V. M. Alternative splicing generates messages encoding rat c-erbA proteins that do not bind thyroid hormone. Proc Natl Acad Sci U S A. 1988 Aug;85(16):5804–5808. doi: 10.1073/pnas.85.16.5804. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Morreale de Escobar G., Pastor R., Obregon M. J., Escobar del Rey F. Effects of maternal hypothyroidism on the weight and thyroid hormone content of rat embryonic tissues, before and after onset of fetal thyroid function. Endocrinology. 1985 Nov;117(5):1890–1900. doi: 10.1210/endo-117-5-1890. [DOI] [PubMed] [Google Scholar]
  11. Nagy A., Rossant J., Nagy R., Abramow-Newerly W., Roder J. C. Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8424–8428. doi: 10.1073/pnas.90.18.8424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Oberkotter L. V. Suckling, but not formula feeding, induces a transient hyperthyroxinemia in rat pups. Endocrinology. 1988 Jul;123(1):127–133. doi: 10.1210/endo-123-1-127. [DOI] [PubMed] [Google Scholar]
  13. Refetoff S., Weiss R. E., Usala S. J. The syndromes of resistance to thyroid hormone. Endocr Rev. 1993 Jun;14(3):348–399. doi: 10.1210/edrv-14-3-348. [DOI] [PubMed] [Google Scholar]
  14. Rousset B., Cure M., Jordan D., Kervran A., Bornet H., Mornex R. Metabolic alterations induced by chronic heat exposure in the rat: the involvement of thyroid function. Pflugers Arch. 1984 May;401(1):64–70. doi: 10.1007/BF00581534. [DOI] [PubMed] [Google Scholar]
  15. Sap J., Muñoz A., Damm K., Goldberg Y., Ghysdael J., Leutz A., Beug H., Vennström B. The c-erb-A protein is a high-affinity receptor for thyroid hormone. Nature. 1986 Dec 18;324(6098):635–640. doi: 10.1038/324635a0. [DOI] [PubMed] [Google Scholar]
  16. Sap J., Muñoz A., Schmitt J., Stunnenberg H., Vennström B. Repression of transcription mediated at a thyroid hormone response element by the v-erb-A oncogene product. Nature. 1989 Jul 20;340(6230):242–244. doi: 10.1038/340242a0. [DOI] [PubMed] [Google Scholar]
  17. Strait K. A., Schwartz H. L., Perez-Castillo A., Oppenheimer J. H. Relationship of c-erbA mRNA content to tissue triiodothyronine nuclear binding capacity and function in developing and adult rats. J Biol Chem. 1990 Jun 25;265(18):10514–10521. [PubMed] [Google Scholar]
  18. Trouillas J., Guigard M. P., Fonlupt P., Souchier C., Girod C. Mapping of corticotropic cells in the normal human pituitary. J Histochem Cytochem. 1996 May;44(5):473–479. doi: 10.1177/44.5.8627004. [DOI] [PubMed] [Google Scholar]
  19. Weinberger C., Thompson C. C., Ong E. S., Lebo R., Gruol D. J., Evans R. M. The c-erb-A gene encodes a thyroid hormone receptor. Nature. 1986 Dec 18;324(6098):641–646. doi: 10.1038/324641a0. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES