Abstract
Peptidyl-tRNA hydrolase activity from Escherichia coli ensures the recycling of peptidyl-tRNAs produced through abortion of translation. This activity, which is essential for cell viability, is carried out by a monomeric protein of 193 residues. The structure of crystalline peptidyl-tRNA hydrolase could be solved at 1.2 A resolution. It indicates a single alpha/beta globular domain built around a twisted mixed beta-sheet, similar to the central core of an aminopeptidase from Aeromonas proteolytica. This similarity allowed the characterization by site-directed mutagenesis of several residues of the active site of peptidyl-tRNA hydrolase. These residues, strictly conserved among the known peptidyl-tRNA hydrolase sequences, delineate a channel which, in the crystal, is occupied by the C-end of a neighbouring peptidyl-tRNA hydrolase molecule. Hence, several main chain atoms of three residues belonging to one peptidyl-tRNA hydrolase polypeptide establish contacts inside the active site of another peptidyl-tRNA hydrolase molecule. Such an interaction is assumed to represent the formation of a complex between the enzyme and one product of the catalysed reaction.
Full Text
The Full Text of this article is available as a PDF (714.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Atherly A. G., Menninger J. R. Mutant E. coli strain with temperature sensitive peptidyl-transfer RNA hydrolase. Nat New Biol. 1972 Dec 20;240(103):245–246. doi: 10.1038/newbio240245a0. [DOI] [PubMed] [Google Scholar]
- Atherly A. G. Peptidyl-transfer RNA hydrolase prevents inhibition of protein synthesis initiation. Nature. 1978 Oct 26;275(5682):769–769. doi: 10.1038/275769a0. [DOI] [PubMed] [Google Scholar]
- Brevet A., Chen J., Lévêque F., Blanquet S., Plateau P. Comparison of the enzymatic properties of the two Escherichia coli lysyl-tRNA synthetase species. J Biol Chem. 1995 Jun 16;270(24):14439–14444. doi: 10.1074/jbc.270.24.14439. [DOI] [PubMed] [Google Scholar]
- Chapeville F., Yot P., Paulin D. Enzymatic hydrolysis of N-acyl-aminoacyl transfer RNAs. Cold Spring Harb Symp Quant Biol. 1969;34:493–498. doi: 10.1101/sqb.1969.034.01.055. [DOI] [PubMed] [Google Scholar]
- Commans S., Plateau P., Blanquet S., Dardel F. Solution structure of the anticodon-binding domain of Escherichia coli lysyl-tRNA synthetase and studies of its interaction with tRNA(Lys). J Mol Biol. 1995 Oct 13;253(1):100–113. doi: 10.1006/jmbi.1995.0539. [DOI] [PubMed] [Google Scholar]
- Csonka L. N., Clark A. J. Construction of an Hfr strain useful for transferring recA mutations between Escherichia coli strains. J Bacteriol. 1980 Jul;143(1):529–530. doi: 10.1128/jb.143.1.529-530.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cuzin F., Kretchmer N., Greenberg R. E., Hurwitz R., Chapeville F. Enzymatic hydrolysis of N-substituted aminoacyl-tRNA. Proc Natl Acad Sci U S A. 1967 Nov;58(5):2079–2086. doi: 10.1073/pnas.58.5.2079. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dardel F. MC-Fit: using Monte-Carlo methods to get accurate confidence limits on enzyme parameters. Comput Appl Biosci. 1994 Jun;10(3):273–275. doi: 10.1093/bioinformatics/10.3.273. [DOI] [PubMed] [Google Scholar]
- Dutka S., Meinnel T., Lazennec C., Mechulam Y., Blanquet S. Role of the 1-72 base pair in tRNAs for the activity of Escherichia coli peptidyl-tRNA hydrolase. Nucleic Acids Res. 1993 Aug 25;21(17):4025–4030. doi: 10.1093/nar/21.17.4025. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fourmy D., Meinnel T., Mechulam Y., Blanquet S. Mapping of the zinc binding domain of Escherichia coli methionyl-tRNA synthetase. J Mol Biol. 1993 Jun 20;231(4):1068–1077. doi: 10.1006/jmbi.1993.1352. [DOI] [PubMed] [Google Scholar]
- García-Villegas M. R., De La Vega F. M., Galindo J. M., Segura M., Buckingham R. H., Guarneros G. Peptidyl-tRNA hydrolase is involved in lambda inhibition of host protein synthesis. EMBO J. 1991 Nov;10(11):3549–3555. doi: 10.1002/j.1460-2075.1991.tb04919.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gross M., Crow P., White J. The site of hydrolysis by rabbit reticulocyte peptidyl-tRNA hydrolase is the 3'-AMP terminus of susceptible tRNA substrates. J Biol Chem. 1992 Jan 25;267(3):2080–2086. [PubMed] [Google Scholar]
- Gross M., Starn T. K., Rundquist C., Crow P., White J., Olin A., Wagner T. Purification and initial characterization of peptidyl-tRNA hydrolase from rabbit reticulocytes. J Biol Chem. 1992 Jan 25;267(3):2073–2079. [PubMed] [Google Scholar]
- Guillon J. M., Meinnel T., Mechulam Y., Lazennec C., Blanquet S., Fayat G. Nucleotides of tRNA governing the specificity of Escherichia coli methionyl-tRNA(fMet) formyltransferase. J Mol Biol. 1992 Mar 20;224(2):359–367. doi: 10.1016/0022-2836(92)91000-f. [DOI] [PubMed] [Google Scholar]
- Hamilton C. M., Aldea M., Washburn B. K., Babitzke P., Kushner S. R. New method for generating deletions and gene replacements in Escherichia coli. J Bacteriol. 1989 Sep;171(9):4617–4622. doi: 10.1128/jb.171.9.4617-4622.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Henderson D., Weil J. A mutant of Escherichia coli that prevents growth of phage lambda and is bypassed by lambda mutants in a nonessential region of the genome. Virology. 1976 Jun;71(2):546–559. doi: 10.1016/0042-6822(76)90380-9. [DOI] [PubMed] [Google Scholar]
- Heurgué-Hamard V., Mora L., Guarneros G., Buckingham R. H. The growth defect in Escherichia coli deficient in peptidyl-tRNA hydrolase is due to starvation for Lys-tRNA(Lys). EMBO J. 1996 Jun 3;15(11):2826–2833. [PMC free article] [PubMed] [Google Scholar]
- Higgins D. G., Sharp P. M. Fast and sensitive multiple sequence alignments on a microcomputer. Comput Appl Biosci. 1989 Apr;5(2):151–153. doi: 10.1093/bioinformatics/5.2.151. [DOI] [PubMed] [Google Scholar]
- Hirel P. H., Lévêque F., Mellot P., Dardel F., Panvert M., Mechulam Y., Fayat G. Genetic engineering of methionyl-tRNA synthetase: in vitro regeneration of an active synthetase by proteolytic cleavage of a methionyl-tRNA synthetase--beta-galactosidase chimeric protein. Biochimie. 1988 Jun;70(6):773–782. doi: 10.1016/0300-9084(88)90107-1. [DOI] [PubMed] [Google Scholar]
- Jones T. A., Zou J. Y., Cowan S. W., Kjeldgaard M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A. 1991 Mar 1;47(Pt 2):110–119. doi: 10.1107/s0108767390010224. [DOI] [PubMed] [Google Scholar]
- Jost J. P., Bock R. M. Enzymatic hydrolysis of N-substituted aminoacyl transfer ribonucleic acid in yeast. J Biol Chem. 1969 Nov 10;244(21):5866–5873. [PubMed] [Google Scholar]
- Koellner G., Luić M., Shugar D., Saenger W., Bzowska A. Crystal structure of calf spleen purine nucleoside phosphorylase in a complex with hypoxanthine at 2.15 A resolution. J Mol Biol. 1997 Jan 17;265(2):202–216. doi: 10.1006/jmbi.1996.0730. [DOI] [PubMed] [Google Scholar]
- Lee C. P., Seong B. L., RajBhandary U. L. Structural and sequence elements important for recognition of Escherichia coli formylmethionine tRNA by methionyl-tRNA transformylase are clustered in the acceptor stem. J Biol Chem. 1991 Sep 25;266(27):18012–18017. [PubMed] [Google Scholar]
- Mayaux J. F., Blanquet S. Binding of zinc to Escherichia coli phenylalanyl transfer ribonucleic acid synthetase. Comparison with other aminoacyl transfer ribonucleic acid synthetases. Biochemistry. 1981 Aug 4;20(16):4647–4654. doi: 10.1021/bi00519a020. [DOI] [PubMed] [Google Scholar]
- Menninger J. R. Accumulation of peptidyl tRNA is lethal to Escherichia coli. J Bacteriol. 1979 Jan;137(1):694–696. doi: 10.1128/jb.137.1.694-696.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Menninger J. R., Coleman R. A. Lincosamide antibiotics stimulate dissociation of peptidyl-tRNA from ribosomes. Antimicrob Agents Chemother. 1993 Sep;37(9):2027–2029. doi: 10.1128/aac.37.9.2027. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Menninger J. R. Peptidyl transfer RNA dissociates during protein synthesis from ribosomes of Escherichia coli. J Biol Chem. 1976 Jun 10;251(11):3392–3398. [PubMed] [Google Scholar]
- Menninger J. R. The accumulation as peptidyl-transfer RNA of isoaccepting transfer RNA families in Escherichia coli with temperature-sensitive peptidyl-transfer RNA hydrolase. J Biol Chem. 1978 Oct 10;253(19):6808–6813. [PubMed] [Google Scholar]
- Nicholls A., Sharp K. A., Honig B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins. 1991;11(4):281–296. doi: 10.1002/prot.340110407. [DOI] [PubMed] [Google Scholar]
- Sayers J. R., Schmidt W., Eckstein F. 5'-3' exonucleases in phosphorothioate-based oligonucleotide-directed mutagenesis. Nucleic Acids Res. 1988 Feb 11;16(3):791–802. doi: 10.1093/nar/16.3.791. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schmitt E., Fromant M., Plateau P., Mechulam Y., Blanquet S. Crystallization and preliminary X-ray analysis of Escherichia coli peptidyl-tRNA hydrolase. Proteins. 1997 May;28(1):135–136. doi: 10.1002/(sici)1097-0134(199705)28:1<135::aid-prot14>3.0.co;2-k. [DOI] [PubMed] [Google Scholar]
- Schulman L. H., Pelka H. The structural basis for the resistance of Escherichia coli formylmethionyl transfer ribonucleic acid to cleavage by Escherichia coli peptidyl transfer ribonucleic acid hydrolase. J Biol Chem. 1975 Jan 25;250(2):542–547. [PubMed] [Google Scholar]
- Shiloach J., Bauer S., de Groot N., Lapidot Y. The influence of the peptide chain length on the activity of peptidyl-tRNA hydrolase from E. coli. Nucleic Acids Res. 1975 Oct;2(10):1941–1950. doi: 10.1093/nar/2.10.1941. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shiloach J., Lapidot Y., de Groot N. The specificity of peptidyl-tRNA hydrolase from E. coli. FEBS Lett. 1975 Sep 15;57(2):130–133. doi: 10.1016/0014-5793(75)80700-9. [DOI] [PubMed] [Google Scholar]