Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1997 Aug 15;16(16):4797–4805. doi: 10.1093/emboj/16.16.4797

Lysine 156 promotes the anomalous proenzyme activity of tPA: X-ray crystal structure of single-chain human tPA.

M Renatus 1, R A Engh 1, M T Stubbs 1, R Huber 1, S Fischer 1, U Kohnert 1, W Bode 1
PMCID: PMC1170115  PMID: 9305622

Abstract

Tissue type plasminogen activator (tPA) is the physiological initiator of fibrinolysis, activating plasminogen via highly specific proteolysis; plasmin then degrades fibrin with relatively broad specificity. Unlike other chymotrypsin family serine proteinases, tPA is proteolytically active in a single-chain form. This form is also preferred for therapeutic administration of tPA in cases of acute myocardial infarction. The proteolytic cleavage which activates most other chymotrypsin family serine proteinases increases the catalytic efficiency of tPA only 5- to 10-fold. The X-ray crystal structure of the catalytic domain of recombinant human single-chain tPA shows that Lys156 forms a salt bridge with Asp194, promoting an active conformation in the single-chain form. Comparisons with the structures of other serine proteinases that also possess Lys156, such as trypsin, factor Xa and human urokinase plasminogen activator (uPA), identify a set of secondary interactions which are required for Lys156 to fulfil this activating role. These findings help explain the anomalous single-chain activity of tPA and may suggest strategies for design of new therapeutic plasminogen activators.

Full Text

The Full Text of this article is available as a PDF (433.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Birktoft J. J., Blow D. M. Structure of crystalline -chymotrypsin. V. The atomic structure of tosyl- -chymotrypsin at 2 A resolution. J Mol Biol. 1972 Jul 21;68(2):187–240. doi: 10.1016/0022-2836(72)90210-0. [DOI] [PubMed] [Google Scholar]
  2. Bode W., Fehlhammer H., Huber R. Crystal structure of bovine trypsinogen at 1-8 A resolution. I. Data collection, application of patterson search techniques and preliminary structural interpretation. J Mol Biol. 1976 Sep 15;106(2):325–335. doi: 10.1016/0022-2836(76)90089-9. [DOI] [PubMed] [Google Scholar]
  3. Bode W., Huber R. Induction of the bovine trypsinogen-trypsin transition by peptides sequentially similar to the N-terminus of trypsin. FEBS Lett. 1976 Oct 1;68(2):231–236. doi: 10.1016/0014-5793(76)80443-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bode W., Schwager P., Huber R. The transition of bovine trypsinogen to a trypsin-like state upon strong ligand binding. The refined crystal structures of the bovine trypsinogen-pancreatic trypsin inhibitor complex and of its ternary complex with Ile-Val at 1.9 A resolution. J Mol Biol. 1978 Jan 5;118(1):99–112. doi: 10.1016/0022-2836(78)90246-2. [DOI] [PubMed] [Google Scholar]
  5. Bode W. The transition of bovine trypsinogen to a trypsin-like state upon strong ligand binding. II. The binding of the pancreatic trypsin inhibitor and of isoleucine-valine and of sequentially related peptides to trypsinogen and to p-guanidinobenzoate-trypsinogen. J Mol Biol. 1979 Feb 5;127(4):357–374. doi: 10.1016/0022-2836(79)90227-4. [DOI] [PubMed] [Google Scholar]
  6. Bode W., Turk D., Karshikov A. The refined 1.9-A X-ray crystal structure of D-Phe-Pro-Arg chloromethylketone-inhibited human alpha-thrombin: structure analysis, overall structure, electrostatic properties, detailed active-site geometry, and structure-function relationships. Protein Sci. 1992 Apr;1(4):426–471. doi: 10.1002/pro.5560010402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bolognesi M., Gatti G., Menagatti E., Guarneri M., Marquart M., Papamokos E., Huber R. Three-dimensional structure of the complex between pancreatic secretory trypsin inhibitor (Kazal type) and trypsinogen at 1.8 A resolution. Structure solution, crystallographic refinement and preliminary structural interpretation. J Mol Biol. 1982 Dec 25;162(4):839–868. doi: 10.1016/0022-2836(82)90550-2. [DOI] [PubMed] [Google Scholar]
  8. Brandstetter H., Bauer M., Huber R., Lollar P., Bode W. X-ray structure of clotting factor IXa: active site and module structure related to Xase activity and hemophilia B. Proc Natl Acad Sci U S A. 1995 Oct 10;92(21):9796–9800. doi: 10.1073/pnas.92.21.9796. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Brandstetter H., Kühne A., Bode W., Huber R., von der Saal W., Wirthensohn K., Engh R. A. X-ray structure of active site-inhibited clotting factor Xa. Implications for drug design and substrate recognition. J Biol Chem. 1996 Nov 22;271(47):29988–29992. doi: 10.1074/jbc.271.47.29988. [DOI] [PubMed] [Google Scholar]
  10. Bringmann P., Gruber D., Liese A., Toschi L., Krätzchmar J., Schleuning W. D., Donner P. Structural features mediating fibrin selectivity of vampire bat plasminogen activators. J Biol Chem. 1995 Oct 27;270(43):25596–25603. doi: 10.1074/jbc.270.43.25596. [DOI] [PubMed] [Google Scholar]
  11. Coletta M., Ascenzi P., Bravin L., Amiconi G., Bolognesi M., Guarneri M., Menegatti E. Thermodynamic modeling of internal equilibria involved in the activation of trypsinogen. J Biomol Struct Dyn. 1990 Feb;7(4):959–972. doi: 10.1080/07391102.1990.10508535. [DOI] [PubMed] [Google Scholar]
  12. Ding L., Coombs G. S., Strandberg L., Navre M., Corey D. R., Madison E. L. Origins of the specificity of tissue-type plasminogen activator. Proc Natl Acad Sci U S A. 1995 Aug 15;92(17):7627–7631. doi: 10.1073/pnas.92.17.7627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Evans S. V. SETOR: hardware-lighted three-dimensional solid model representations of macromolecules. J Mol Graph. 1993 Jun;11(2):134-8, 127-8. doi: 10.1016/0263-7855(93)87009-t. [DOI] [PubMed] [Google Scholar]
  14. Fehlhammer H., Bode W., Huber R. Crystal structure of bovine trypsinogen at 1-8 A resolution. II. Crystallographic refinement, refined crystal structure and comparison with bovine trypsin. J Mol Biol. 1977 Apr 25;111(4):415–438. doi: 10.1016/s0022-2836(77)80062-4. [DOI] [PubMed] [Google Scholar]
  15. Freer S. T., Kraut J., Robertus J. D., Wright H. T., Xuong N. H. Chymotrypsinogen: 2.5-angstrom crystal structure, comparison with alpha-chymotrypsin, and implications for zymogen activation. Biochemistry. 1970 Apr 28;9(9):1997–2009. doi: 10.1021/bi00811a022. [DOI] [PubMed] [Google Scholar]
  16. Frishman D., Argos P. Knowledge-based protein secondary structure assignment. Proteins. 1995 Dec;23(4):566–579. doi: 10.1002/prot.340230412. [DOI] [PubMed] [Google Scholar]
  17. Gardell S. J., Duong L. T., Diehl R. E., York J. D., Hare T. R., Register R. B., Jacobs J. W., Dixon R. A., Friedman P. A. Isolation, characterization, and cDNA cloning of a vampire bat salivary plasminogen activator. J Biol Chem. 1989 Oct 25;264(30):17947–17952. [PubMed] [Google Scholar]
  18. Gershenfeld H. K., Hershberger R. J., Shows T. B., Weissman I. L. Cloning and chromosomal assignment of a human cDNA encoding a T cell- and natural killer cell-specific trypsin-like serine protease. Proc Natl Acad Sci U S A. 1988 Feb;85(4):1184–1188. doi: 10.1073/pnas.85.4.1184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hedstrom L., Lin T. Y., Fast W. Hydrophobic interactions control zymogen activation in the trypsin family of serine proteases. Biochemistry. 1996 Apr 9;35(14):4515–4523. doi: 10.1021/bi951928k. [DOI] [PubMed] [Google Scholar]
  20. Hoylaerts M., Rijken D. C., Lijnen H. R., Collen D. Kinetics of the activation of plasminogen by human tissue plasminogen activator. Role of fibrin. J Biol Chem. 1982 Mar 25;257(6):2912–2919. [PubMed] [Google Scholar]
  21. Jenne D., Rey C., Haefliger J. A., Qiao B. Y., Groscurth P., Tschopp J. Identification and sequencing of cDNA clones encoding the granule-associated serine proteases granzymes D, E, and F of cytolytic T lymphocytes. Proc Natl Acad Sci U S A. 1988 Jul;85(13):4814–4818. doi: 10.1073/pnas.85.13.4814. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ke S. H., Tachias K., Lamba D., Bode W., Madison E. L. Identification of a hydrophobic exosite on tissue type plasminogen activator that modulates specificity for plasminogen. J Biol Chem. 1997 Jan 17;272(3):1811–1816. doi: 10.1074/jbc.272.3.1811. [DOI] [PubMed] [Google Scholar]
  23. Leytus S. P., Kurachi K., Sakariassen K. S., Davie E. W. Nucleotide sequence of the cDNA coding for human complement C1r. Biochemistry. 1986 Aug 26;25(17):4855–4863. doi: 10.1021/bi00365a020. [DOI] [PubMed] [Google Scholar]
  24. Lijnen H. R., Van Hoef B., Nelles L., Collen D. Plasminogen activation with single-chain urokinase-type plasminogen activator (scu-PA). Studies with active site mutagenized plasminogen (Ser740----Ala) and plasmin-resistant scu-PA (Lys158----Glu). J Biol Chem. 1990 Mar 25;265(9):5232–5236. [PubMed] [Google Scholar]
  25. Madison E. L., Coombs G. S., Corey D. R. Substrate specificity of tissue type plasminogen activator. Characterization of the fibrin independent specificity of t-PA for plasminogen. J Biol Chem. 1995 Mar 31;270(13):7558–7562. doi: 10.1074/jbc.270.13.7558. [DOI] [PubMed] [Google Scholar]
  26. Madison E. L., Goldsmith E. J., Gerard R. D., Gething M. J., Sambrook J. F. Serpin-resistant mutants of human tissue-type plasminogen activator. Nature. 1989 Jun 29;339(6227):721–724. doi: 10.1038/339721a0. [DOI] [PubMed] [Google Scholar]
  27. Madison E. L., Goldsmith E. J., Gething M. J., Sambrook J. F., Gerard R. D. Restoration of serine protease-inhibitor interaction by protein engineering. J Biol Chem. 1990 Dec 15;265(35):21423–21426. [PubMed] [Google Scholar]
  28. Madison E. L., Kobe A., Gething M. J., Sambrook J. F., Goldsmith E. J. Converting tissue plasminogen activator to a zymogen: a regulatory triad of Asp-His-Ser. Science. 1993 Oct 15;262(5132):419–421. doi: 10.1126/science.8211162. [DOI] [PubMed] [Google Scholar]
  29. Mather T., Oganessyan V., Hof P., Huber R., Foundling S., Esmon C., Bode W. The 2.8 A crystal structure of Gla-domainless activated protein C. EMBO J. 1996 Dec 16;15(24):6822–6831. [PMC free article] [PubMed] [Google Scholar]
  30. Morgan P. H., Walsh K. A., Neurath H. Inactivation of trypsinogen by methane sulfonyl fluoride. FEBS Lett. 1974 Apr 15;41(1):108–110. doi: 10.1016/0014-5793(74)80965-8. [DOI] [PubMed] [Google Scholar]
  31. Nienaber V. L., Young S. L., Birktoft J. J., Higgins D. L., Berliner L. J. Conformational similarities between one-chain and two-chain tissue plasminogen activator (t-PA): implications to the activation mechanism on one-chain t-PA. Biochemistry. 1992 Apr 21;31(15):3852–3861. doi: 10.1021/bi00130a017. [DOI] [PubMed] [Google Scholar]
  32. Padmanabhan K., Padmanabhan K. P., Tulinsky A., Park C. H., Bode W., Huber R., Blankenship D. T., Cardin A. D., Kisiel W. Structure of human des(1-45) factor Xa at 2.2 A resolution. J Mol Biol. 1993 Aug 5;232(3):947–966. doi: 10.1006/jmbi.1993.1441. [DOI] [PubMed] [Google Scholar]
  33. Pannekoek H., Lijnen H. R., Loskutoff D. J. Recommendations for the nomenclature of mutant fibrinolytic genes and their proteins. Report of the SSC Fibrinolysis Subcommittee 1990. Thromb Haemost. 1990 Dec 28;64(4):600–603. [PubMed] [Google Scholar]
  34. Paoni N. F., Keyt B. A., Refino C. J., Chow A. M., Nguyen H. V., Berleau L. T., Badillo J., Peña L. C., Brady K., Wurm F. M. A slow clearing, fibrin-specific, PAI-1 resistant variant of t-PA (T103N, KHRR 296-299 AAAA). Thromb Haemost. 1993 Aug 2;70(2):307–312. [PubMed] [Google Scholar]
  35. Petersen L. C., Boel E., Johannessen M., Foster D. Quenching of the amidolytic activity of one-chain tissue-type plasminogen activator by mutation of lysine-416. Biochemistry. 1990 Apr 10;29(14):3451–3457. doi: 10.1021/bi00466a005. [DOI] [PubMed] [Google Scholar]
  36. Robinson N. C., Neurath H., Walsh K. A. Preparation and characterization of guanidinated trypsinogen and -guanidinated trypsin. Biochemistry. 1973 Jan 30;12(3):414–420. doi: 10.1021/bi00727a009. [DOI] [PubMed] [Google Scholar]
  37. Rånby M., Bergsdorf N., Nilsson T. Enzymatic properties of the one- and two-chain form of tissue plasminogen activator. Thromb Res. 1982 Jul 15;27(2):175–183. doi: 10.1016/0049-3848(82)90197-9. [DOI] [PubMed] [Google Scholar]
  38. Tachias K., Madison E. L. Converting tissue-type plasminogen activator into a zymogen. J Biol Chem. 1996 Nov 15;271(46):28749–28752. doi: 10.1074/jbc.271.46.28749. [DOI] [PubMed] [Google Scholar]
  39. Tate K. M., Higgins D. L., Holmes W. E., Winkler M. E., Heyneker H. L., Vehar G. A. Functional role of proteolytic cleavage at arginine-275 of human tissue plasminogen activator as assessed by site-directed mutagenesis. Biochemistry. 1987 Jan 27;26(2):338–343. doi: 10.1021/bi00376a002. [DOI] [PubMed] [Google Scholar]
  40. Wallén P., Pohl G., Bergsdorf N., Rånby M., Ny T., Jörnvall H. Purification and characterization of a melanoma cell plasminogen activator. Eur J Biochem. 1983 May 16;132(3):681–686. doi: 10.1111/j.1432-1033.1983.tb07418.x. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES