Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1997 Aug 15;16(16):4806–4816. doi: 10.1093/emboj/16.16.4806

Catalase is a sink for H2O2 and is indispensable for stress defence in C3 plants.

H Willekens 1, S Chamnongpol 1, M Davey 1, M Schraudner 1, C Langebartels 1, M Van Montagu 1, D Inzé 1, W Van Camp 1
PMCID: PMC1170116  PMID: 9305623

Abstract

Hydrogen peroxide (H2O2) has been implicated in many stress conditions. Control of H2O2 levels is complex and dissection of mechanisms generating and relieving H2O2 stress is difficult, particularly in intact plants. We have used transgenic tobacco with approximately 10% wild-type catalase activity to study the role of catalase and effects of H2O2 stress in plants. Catalase-deficient plants showed no visible disorders at low light, but in elevated light rapidly developed white necrotic lesions on the leaves. Lesion formation required photorespiratory activity since damage was prevented under elevated CO2. Accumulation of H2O2 was not detected during leaf necrosis. Alternative H2O2-scavenging mechanisms may have compensated for reduced catalase activity, as shown by increased ascorbate peroxidase and glutathione peroxidase levels. Leaf necrosis correlated with accumulation of oxidized glutathione and a 4-fold decrease in ascorbate, indicating that catalase is critical for maintaining the redox balance during oxidative stress. Such control may not be limited to peroxisomal H2O2 production. Catalase functions as a cellular sink for H2O2, as evidenced by complementation of catalase deficiency by exogenous catalase, and comparison of catalase-deficient and control leaf discs in removing external H2O2. Stress analysis revealed increased susceptibility of catalase-deficient plants to paraquat, salt and ozone, but not to chilling.

Full Text

The Full Text of this article is available as a PDF (529.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen R. D. Dissection of Oxidative Stress Tolerance Using Transgenic Plants. Plant Physiol. 1995 Apr;107(4):1049–1054. doi: 10.1104/pp.107.4.1049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beeor-Tzahar T., Ben-Hayyim G., Holland D., Faltin Z., Eshdat Y. A stress-associated citrus protein is a distinct plant phospholipid hydroperoxide glutathione peroxidase. FEBS Lett. 1995 Jun 12;366(2-3):151–155. doi: 10.1016/0014-5793(95)00521-a. [DOI] [PubMed] [Google Scholar]
  3. Criqui M. C., Jamet E., Parmentier Y., Marbach J., Durr A., Fleck J. Isolation and characterization of a plant cDNA showing homology to animal glutathione peroxidases. Plant Mol Biol. 1992 Feb;18(3):623–627. doi: 10.1007/BF00040684. [DOI] [PubMed] [Google Scholar]
  4. Deng H. X., Hentati A., Tainer J. A., Iqbal Z., Cayabyab A., Hung W. Y., Getzoff E. D., Hu P., Herzfeldt B., Roos R. P. Amyotrophic lateral sclerosis and structural defects in Cu,Zn superoxide dismutase. Science. 1993 Aug 20;261(5124):1047–1051. doi: 10.1126/science.8351519. [DOI] [PubMed] [Google Scholar]
  5. Foyer C. H. Oxygen processing in photosynthesis. Biochem Soc Trans. 1996 May;24(2):427–433. doi: 10.1042/bst0240427. [DOI] [PubMed] [Google Scholar]
  6. Foyer C. H., Souriau N., Perret S., Lelandais M., Kunert K. J., Pruvost C., Jouanin L. Overexpression of glutathione reductase but not glutathione synthetase leads to increases in antioxidant capacity and resistance to photoinhibition in poplar trees. Plant Physiol. 1995 Nov;109(3):1047–1057. doi: 10.1104/pp.109.3.1047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Foyer C., Lelandais M., Galap C., Kunert K. J. Effects of Elevated Cytosolic Glutathione Reductase Activity on the Cellular Glutathione Pool and Photosynthesis in Leaves under Normal and Stress Conditions. Plant Physiol. 1991 Nov;97(3):863–872. doi: 10.1104/pp.97.3.863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Groom Q. J., Torres M. A., Fordham-Skelton A. P., Hammond-Kosack K. E., Robinson N. J., Jones J. D. rbohA, a rice homologue of the mammalian gp91phox respiratory burst oxidase gene. Plant J. 1996 Sep;10(3):515–522. doi: 10.1046/j.1365-313x.1996.10030515.x. [DOI] [PubMed] [Google Scholar]
  9. Guyton K. Z., Liu Y., Gorospe M., Xu Q., Holbrook N. J. Activation of mitogen-activated protein kinase by H2O2. Role in cell survival following oxidant injury. J Biol Chem. 1996 Feb 23;271(8):4138–4142. doi: 10.1074/jbc.271.8.4138. [DOI] [PubMed] [Google Scholar]
  10. Khan A. U., Wilson T. Reactive oxygen species as cellular messengers. Chem Biol. 1995 Jul;2(7):437–445. doi: 10.1016/1074-5521(95)90259-7. [DOI] [PubMed] [Google Scholar]
  11. Lagrimini L. M., Bradford S., Rothstein S. Peroxidase-Induced Wilting in Transgenic Tobacco Plants. Plant Cell. 1990 Jan;2(1):7–18. doi: 10.1105/tpc.2.1.7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Levine A., Pennell R. I., Alvarez M. E., Palmer R., Lamb C. Calcium-mediated apoptosis in a plant hypersensitive disease resistance response. Curr Biol. 1996 Apr 1;6(4):427–437. doi: 10.1016/s0960-9822(02)00510-9. [DOI] [PubMed] [Google Scholar]
  13. Levine A., Tenhaken R., Dixon R., Lamb C. H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell. 1994 Nov 18;79(4):583–593. doi: 10.1016/0092-8674(94)90544-4. [DOI] [PubMed] [Google Scholar]
  14. McConkey D. J., Orrenius S. Signal transduction pathways to apoptosis. Trends Cell Biol. 1994 Oct;4(10):370–375. doi: 10.1016/0962-8924(94)90087-6. [DOI] [PubMed] [Google Scholar]
  15. Okuda T., Matsuda Y., Yamanaka A., Sagisaka S. Abrupt increase in the level of hydrogen peroxide in leaves of winter wheat is caused by cold treatment. Plant Physiol. 1991 Nov;97(3):1265–1267. doi: 10.1104/pp.97.3.1265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Pitcher L. H., Zilinskas B. A. Overexpression of Copper/Zinc Superoxide Dismutase in the Cytosol of Transgenic Tobacco Confers Partial Resistance to Ozone-Induced Foliar Necrosis. Plant Physiol. 1996 Feb;110(2):583–588. doi: 10.1104/pp.110.2.583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Rao M. V., Hale B. A., Ormrod D. P. Amelioration of Ozone-Induced Oxidative Damage in Wheat Plants Grown under High Carbon Dioxide (Role of Antioxidant Enzymes). Plant Physiol. 1995 Oct;109(2):421–432. doi: 10.1104/pp.109.2.421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Schraudner M., Langebartels C., Sandermann H., Jr Plant defence systems and ozone. Biochem Soc Trans. 1996 May;24(2):456–461. doi: 10.1042/bst0240456. [DOI] [PubMed] [Google Scholar]
  19. Shindler J. S., Childs R. E., Bardsley W. G. Peroxidase from human cervical mucus. The isolation and characterisation. Eur J Biochem. 1976 Jun 1;65(2):325–331. doi: 10.1111/j.1432-1033.1976.tb10345.x. [DOI] [PubMed] [Google Scholar]
  20. Sohal R. S., Weindruch R. Oxidative stress, caloric restriction, and aging. Science. 1996 Jul 5;273(5271):59–63. doi: 10.1126/science.273.5271.59. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Spector A. Oxidative stress-induced cataract: mechanism of action. FASEB J. 1995 Sep;9(12):1173–1182. [PubMed] [Google Scholar]
  22. Sundaresan M., Yu Z. X., Ferrans V. J., Irani K., Finkel T. Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science. 1995 Oct 13;270(5234):296–299. doi: 10.1126/science.270.5234.296. [DOI] [PubMed] [Google Scholar]
  23. Verduyn C., Giuseppin M. L., Scheffers W. A., van Dijken J. P. Hydrogen peroxide metabolism in yeasts. Appl Environ Microbiol. 1988 Aug;54(8):2086–2090. doi: 10.1128/aem.54.8.2086-2090.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Willekens H., Langebartels C., Tiré C., Van Montagu M., Inzé D., Van Camp W. Differential expression of catalase genes in Nicotiana plumbaginifolia (L.). Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10450–10454. doi: 10.1073/pnas.91.22.10450. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Zelitch I., Havir E. A., McGonigle B., McHale N. A., Nelson T. Leaf catalase mRNA and catalase-protein levels in a high-catalase tobacco mutant with o(2)-resistant photosynthesis. Plant Physiol. 1991 Dec;97(4):1592–1595. doi: 10.1104/pp.97.4.1592. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES