Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1997 Aug 15;16(16):4938–4950. doi: 10.1093/emboj/16.16.4938

Bivalence of EGF-like ligands drives the ErbB signaling network.

E Tzahar 1, R Pinkas-Kramarski 1, J D Moyer 1, L N Klapper 1, I Alroy 1, G Levkowitz 1, M Shelly 1, S Henis 1, M Eisenstein 1, B J Ratzkin 1, M Sela 1, G C Andrews 1, Y Yarden 1
PMCID: PMC1170129  PMID: 9305636

Abstract

Signaling by epidermal growth factor (EGF)-like ligands is mediated by an interactive network of four ErbB receptor tyrosine kinases, whose mechanism of ligand-induced dimerization is unknown. We contrasted two existing models: a conformation-driven activation of a receptor-intrinsic dimerization site and a ligand bivalence model. Analysis of a Neu differentiation factor (NDF)-induced heterodimer between ErbB-3 and ErbB-2 favors a bivalence model; the ligand simultaneously binds both ErbB-3 and ErbB-2, but, due to low-affinity of the second binding event, ligand bivalence drives dimerization only when the receptors are membrane anchored. Results obtained with a chimera and isoforms of NDF/neuregulin predict that each terminus of the ligand molecule contains a distinct binding site. The C-terminal low-affinity site has broad specificity, but it prefers interaction with ErbB-2, an oncogenic protein acting as a promiscuous low-affinity subunit of the three primary receptors. Thus, ligand bivalence enables signal diversification through selective recruitment of homo- and heterodimers of ErbB receptors, and it may explain oncogenicity of erbB-2/HER2.

Full Text

The Full Text of this article is available as a PDF (444.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barbacci E. G., Guarino B. C., Stroh J. G., Singleton D. H., Rosnack K. J., Moyer J. D., Andrews G. C. The structural basis for the specificity of epidermal growth factor and heregulin binding. J Biol Chem. 1995 Apr 21;270(16):9585–9589. doi: 10.1074/jbc.270.16.9585. [DOI] [PubMed] [Google Scholar]
  2. Baselga J., Tripathy D., Mendelsohn J., Baughman S., Benz C. C., Dantis L., Sklarin N. T., Seidman A. D., Hudis C. A., Moore J. Phase II study of weekly intravenous recombinant humanized anti-p185HER2 monoclonal antibody in patients with HER2/neu-overexpressing metastatic breast cancer. J Clin Oncol. 1996 Mar;14(3):737–744. doi: 10.1200/JCO.1996.14.3.737. [DOI] [PubMed] [Google Scholar]
  3. Beerli R. R., Hynes N. E. Epidermal growth factor-related peptides activate distinct subsets of ErbB receptors and differ in their biological activities. J Biol Chem. 1996 Mar 15;271(11):6071–6076. doi: 10.1074/jbc.271.11.6071. [DOI] [PubMed] [Google Scholar]
  4. Blechman J. M., Lev S., Barg J., Eisenstein M., Vaks B., Vogel Z., Givol D., Yarden Y. The fourth immunoglobulin domain of the stem cell factor receptor couples ligand binding to signal transduction. Cell. 1995 Jan 13;80(1):103–113. doi: 10.1016/0092-8674(95)90455-7. [DOI] [PubMed] [Google Scholar]
  5. Brandt-Rauf P. W., Pincus M. R., Chen J. M. Conformational changes induced by the transforming amino acid substitution in the transmembrane domain of the neu oncogene-encoded p185 protein. J Protein Chem. 1989 Dec;8(6):749–756. doi: 10.1007/BF01024899. [DOI] [PubMed] [Google Scholar]
  6. Cohen B. D., Kiener P. A., Green J. M., Foy L., Fell H. P., Zhang K. The relationship between human epidermal growth-like factor receptor expression and cellular transformation in NIH3T3 cells. J Biol Chem. 1996 Nov 29;271(48):30897–30903. doi: 10.1074/jbc.271.48.30897. [DOI] [PubMed] [Google Scholar]
  7. Di Fiore P. P., Pierce J. H., Kraus M. H., Segatto O., King C. R., Aaronson S. A. erbB-2 is a potent oncogene when overexpressed in NIH/3T3 cells. Science. 1987 Jul 10;237(4811):178–182. doi: 10.1126/science.2885917. [DOI] [PubMed] [Google Scholar]
  8. Graus-Porta D., Beerli R. R., Hynes N. E. Single-chain antibody-mediated intracellular retention of ErbB-2 impairs Neu differentiation factor and epidermal growth factor signaling. Mol Cell Biol. 1995 Mar;15(3):1182–1191. doi: 10.1128/mcb.15.3.1182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Groenen L. C., Nice E. C., Burgess A. W. Structure-function relationships for the EGF/TGF-alpha family of mitogens. Growth Factors. 1994;11(4):235–257. doi: 10.3109/08977199409010997. [DOI] [PubMed] [Google Scholar]
  10. Gullick W. J. A new model for the interaction of EGF-like ligands with their receptors: the new one-two. Eur J Cancer. 1994;30A(14):2186–2186. doi: 10.1016/0959-8049(94)00365-c. [DOI] [PubMed] [Google Scholar]
  11. Guy P. M., Platko J. V., Cantley L. C., Cerione R. A., Carraway K. L., 3rd Insect cell-expressed p180erbB3 possesses an impaired tyrosine kinase activity. Proc Natl Acad Sci U S A. 1994 Aug 16;91(17):8132–8136. doi: 10.1073/pnas.91.17.8132. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Horan T., Wen J., Arakawa T., Liu N., Brankow D., Hu S., Ratzkin B., Philo J. S. Binding of Neu differentiation factor with the extracellular domain of Her2 and Her3. J Biol Chem. 1995 Oct 13;270(41):24604–24608. doi: 10.1074/jbc.270.41.24604. [DOI] [PubMed] [Google Scholar]
  13. Hudziak R. M., Schlessinger J., Ullrich A. Increased expression of the putative growth factor receptor p185HER2 causes transformation and tumorigenesis of NIH 3T3 cells. Proc Natl Acad Sci U S A. 1987 Oct;84(20):7159–7163. doi: 10.1073/pnas.84.20.7159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hurwitz D. R., Emanuel S. L., Nathan M. H., Sarver N., Ullrich A., Felder S., Lax I., Schlessinger J. EGF induces increased ligand binding affinity and dimerization of soluble epidermal growth factor (EGF) receptor extracellular domain. J Biol Chem. 1991 Nov 15;266(32):22035–22043. [PubMed] [Google Scholar]
  15. Johnsson B., Löfås S., Lindquist G. Immobilization of proteins to a carboxymethyldextran-modified gold surface for biospecific interaction analysis in surface plasmon resonance sensors. Anal Biochem. 1991 Nov 1;198(2):268–277. doi: 10.1016/0003-2697(91)90424-r. [DOI] [PubMed] [Google Scholar]
  16. Karunagaran D., Tzahar E., Beerli R. R., Chen X., Graus-Porta D., Ratzkin B. J., Seger R., Hynes N. E., Yarden Y. ErbB-2 is a common auxiliary subunit of NDF and EGF receptors: implications for breast cancer. EMBO J. 1996 Jan 15;15(2):254–264. [PMC free article] [PubMed] [Google Scholar]
  17. Karunagaran D., Tzahar E., Liu N., Wen D., Yarden Y. Neu differentiation factor inhibits EGF binding. A model for trans-regulation within the ErbB family of receptor tyrosine kinases. J Biol Chem. 1995 Apr 28;270(17):9982–9990. doi: 10.1074/jbc.270.17.9982. [DOI] [PubMed] [Google Scholar]
  18. Klapper L. N., Vaisman N., Hurwitz E., Pinkas-Kramarski R., Yarden Y., Sela M. A subclass of tumor-inhibitory monoclonal antibodies to ErbB-2/HER2 blocks crosstalk with growth factor receptors. Oncogene. 1997 May 1;14(17):2099–2109. doi: 10.1038/sj.onc.1201029. [DOI] [PubMed] [Google Scholar]
  19. Kokai Y., Myers J. N., Wada T., Brown V. I., LeVea C. M., Davis J. G., Dobashi K., Greene M. I. Synergistic interaction of p185c-neu and the EGF receptor leads to transformation of rodent fibroblasts. Cell. 1989 Jul 28;58(2):287–292. doi: 10.1016/0092-8674(89)90843-x. [DOI] [PubMed] [Google Scholar]
  20. Lee K. F., Simon H., Chen H., Bates B., Hung M. C., Hauser C. Requirement for neuregulin receptor erbB2 in neural and cardiac development. Nature. 1995 Nov 23;378(6555):394–398. doi: 10.1038/378394a0. [DOI] [PubMed] [Google Scholar]
  21. Lemmon M. A., Bu Z., Ladbury J. E., Zhou M., Pinchasi D., Lax I., Engelman D. M., Schlessinger J. Two EGF molecules contribute additively to stabilization of the EGFR dimer. EMBO J. 1997 Jan 15;16(2):281–294. doi: 10.1093/emboj/16.2.281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lonardo F., Di Marco E., King C. R., Pierce J. H., Segatto O., Aaronson S. A., Di Fiore P. P. The normal erbB-2 product is an atypical receptor-like tyrosine kinase with constitutive activity in the absence of ligand. New Biol. 1990 Nov;2(11):992–1003. [PubMed] [Google Scholar]
  23. Lupu R., Colomer R., Zugmaier G., Sarup J., Shepard M., Slamon D., Lippman M. E. Direct interaction of a ligand for the erbB2 oncogene product with the EGF receptor and p185erbB2. Science. 1990 Sep 28;249(4976):1552–1555. doi: 10.1126/science.2218496. [DOI] [PubMed] [Google Scholar]
  24. Morrissey T. K., Levi A. D., Nuijens A., Sliwkowski M. X., Bunge R. P. Axon-induced mitogenesis of human Schwann cells involves heregulin and p185erbB2. Proc Natl Acad Sci U S A. 1995 Feb 28;92(5):1431–1435. doi: 10.1073/pnas.92.5.1431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Northrup S. H., Erickson H. P. Kinetics of protein-protein association explained by Brownian dynamics computer simulation. Proc Natl Acad Sci U S A. 1992 Apr 15;89(8):3338–3342. doi: 10.1073/pnas.89.8.3338. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Peles E., Ben-Levy R., Tzahar E., Liu N., Wen D., Yarden Y. Cell-type specific interaction of Neu differentiation factor (NDF/heregulin) with Neu/HER-2 suggests complex ligand-receptor relationships. EMBO J. 1993 Mar;12(3):961–971. doi: 10.1002/j.1460-2075.1993.tb05737.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Peles E., Yarden Y. Neu and its ligands: from an oncogene to neural factors. Bioessays. 1993 Dec;15(12):815–824. doi: 10.1002/bies.950151207. [DOI] [PubMed] [Google Scholar]
  28. Pinkas-Kramarski R., Alroy I., Yarden Y. ErbB receptors and EGF-like ligands: cell lineage determination and oncogenesis through combinatorial signaling. J Mammary Gland Biol Neoplasia. 1997 Apr;2(2):97–107. doi: 10.1023/a:1026343528967. [DOI] [PubMed] [Google Scholar]
  29. Pinkas-Kramarski R., Shelly M., Glathe S., Ratzkin B. J., Yarden Y. Neu differentiation factor/neuregulin isoforms activate distinct receptor combinations. J Biol Chem. 1996 Aug 9;271(32):19029–19032. doi: 10.1074/jbc.271.32.19029. [DOI] [PubMed] [Google Scholar]
  30. Pinkas-Kramarski R., Soussan L., Waterman H., Levkowitz G., Alroy I., Klapper L., Lavi S., Seger R., Ratzkin B. J., Sela M. Diversification of Neu differentiation factor and epidermal growth factor signaling by combinatorial receptor interactions. EMBO J. 1996 May 15;15(10):2452–2467. [PMC free article] [PubMed] [Google Scholar]
  31. Richter A., Conlan J. W., Ward M. E., Chamberlin S. G., Alexander P., Richards N. G., Davies D. E. Multidomain binding of transforming growth factor alpha to the epidermal growth factor receptor. Biochemistry. 1992 Oct 13;31(40):9546–9554. doi: 10.1021/bi00155a006. [DOI] [PubMed] [Google Scholar]
  32. Riese D. J., 2nd, van Raaij T. M., Plowman G. D., Andrews G. C., Stern D. F. The cellular response to neuregulins is governed by complex interactions of the erbB receptor family. Mol Cell Biol. 1995 Oct;15(10):5770–5776. doi: 10.1128/mcb.15.10.5770. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Samanta A., LeVea C. M., Dougall W. C., Qian X., Greene M. I. Ligand and p185c-neu density govern receptor interactions and tyrosine kinase activation. Proc Natl Acad Sci U S A. 1994 Mar 1;91(5):1711–1715. doi: 10.1073/pnas.91.5.1711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Slamon D. J., Godolphin W., Jones L. A., Holt J. A., Wong S. G., Keith D. E., Levin W. J., Stuart S. G., Udove J., Ullrich A. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science. 1989 May 12;244(4905):707–712. doi: 10.1126/science.2470152. [DOI] [PubMed] [Google Scholar]
  35. Sliwkowski M. X., Schaefer G., Akita R. W., Lofgren J. A., Fitzpatrick V. D., Nuijens A., Fendly B. M., Cerione R. A., Vandlen R. L., Carraway K. L., 3rd Coexpression of erbB2 and erbB3 proteins reconstitutes a high affinity receptor for heregulin. J Biol Chem. 1994 May 20;269(20):14661–14665. [PubMed] [Google Scholar]
  36. Stancovski I., Sela M., Yarden Y. Molecular and clinical aspects of the Neu/ErbB-2 receptor tyrosine kinase. Cancer Treat Res. 1994;71:161–191. doi: 10.1007/978-1-4615-2592-9_9. [DOI] [PubMed] [Google Scholar]
  37. Sternberg M. J., Gullick W. J. A sequence motif in the transmembrane region of growth factor receptors with tyrosine kinase activity mediates dimerization. Protein Eng. 1990 Mar;3(4):245–248. doi: 10.1093/protein/3.4.245. [DOI] [PubMed] [Google Scholar]
  38. Summerfield A. E., Hudnall A. K., Lukas T. J., Guyer C. A., Staros J. V. Identification of residues of the epidermal growth factor receptor proximal to residue 45 of bound epidermal growth factor. J Biol Chem. 1996 Aug 16;271(33):19656–19659. doi: 10.1074/jbc.271.33.19656. [DOI] [PubMed] [Google Scholar]
  39. Tzahar E., Levkowitz G., Karunagaran D., Yi L., Peles E., Lavi S., Chang D., Liu N., Yayon A., Wen D. ErbB-3 and ErbB-4 function as the respective low and high affinity receptors of all Neu differentiation factor/heregulin isoforms. J Biol Chem. 1994 Oct 7;269(40):25226–25233. [PubMed] [Google Scholar]
  40. Tzahar E., Waterman H., Chen X., Levkowitz G., Karunagaran D., Lavi S., Ratzkin B. J., Yarden Y. A hierarchical network of interreceptor interactions determines signal transduction by Neu differentiation factor/neuregulin and epidermal growth factor. Mol Cell Biol. 1996 Oct;16(10):5276–5287. doi: 10.1128/mcb.16.10.5276. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Wada T., Qian X. L., Greene M. I. Intermolecular association of the p185neu protein and EGF receptor modulates EGF receptor function. Cell. 1990 Jun 29;61(7):1339–1347. doi: 10.1016/0092-8674(90)90697-d. [DOI] [PubMed] [Google Scholar]
  42. Wallasch C., Weiss F. U., Niederfellner G., Jallal B., Issing W., Ullrich A. Heregulin-dependent regulation of HER2/neu oncogenic signaling by heterodimerization with HER3. EMBO J. 1995 Sep 1;14(17):4267–4275. doi: 10.1002/j.1460-2075.1995.tb00101.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Weiner D. B., Liu J., Cohen J. A., Williams W. V., Greene M. I. A point mutation in the neu oncogene mimics ligand induction of receptor aggregation. Nature. 1989 May 18;339(6221):230–231. doi: 10.1038/339230a0. [DOI] [PubMed] [Google Scholar]
  44. Yarden Y., Schlessinger J. Self-phosphorylation of epidermal growth factor receptor: evidence for a model of intermolecular allosteric activation. Biochemistry. 1987 Mar 10;26(5):1434–1442. doi: 10.1021/bi00379a034. [DOI] [PubMed] [Google Scholar]
  45. Zhou M., Felder S., Rubinstein M., Hurwitz D. R., Ullrich A., Lax I., Schlessinger J. Real-time measurements of kinetics of EGF binding to soluble EGF receptor monomers and dimers support the dimerization model for receptor activation. Biochemistry. 1993 Aug 17;32(32):8193–8198. doi: 10.1021/bi00083a020. [DOI] [PubMed] [Google Scholar]
  46. van der Geer P., Hunter T., Lindberg R. A. Receptor protein-tyrosine kinases and their signal transduction pathways. Annu Rev Cell Biol. 1994;10:251–337. doi: 10.1146/annurev.cb.10.110194.001343. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES